Penn Bioengineers Recommend Improvements to Science Communication

Three graduate students in Bioengineering have collaborated to craft a list of recommendations to improve science communication during national health emergencies.

Doctoral students Miles J. Arnett, Dimitris Boufidis, and Melanie Hilman are part of the Penn Science Policy and Diplomacy Group (PSPDG), student organization which creates opportunities for students to get hands-on experience in Science Policy, Diplomacy, and Communication.

Their brief reviews the public health response to the COVID-19 pandemic and recommends specific improvements to science policy and communication by national scientific institutions:

The public health response to the pandemic was dramatically weakened by an uncoordinated communication strategy, inconsistent messaging, and fractured media environments. These shortcomings had a real human cost, with an estimated hundreds of thousands of Americans dying as a consequence of high rates of vaccine hesitancy. Now, in the aftermath of the pandemic, we have a chance to learn from this crisis and develop a more robust science communication infrastructure for future health emergencies.

Read “From Chaos to Clarity: Reinventing Science Communication After COVID-19” at Medium.

Newly Discovered ‘Encrypted Peptides’ Found in Human Plasma Exhibit Antibiotic Properties

by Melissa Pappas

The antimicrobial peptides the researchers studied are “encrypted” in that they are contained within Apolipoprotein B, a blood plasma protein that is not directly involved in the immune response, but are not normally expressed on their own.

The rise of drug-resistant bacteria infections is one of the world’s most severe global health issues, estimated to cause 10 million deaths annually by the year 2050. Some of the most virulent and antibiotic-resistant bacterial pathogens are the leading cause of life-threatening, hospital-acquired infections, particularly dangerous for immunocompromised and critically ill patients. Traditional and continual synthesis of antibiotics will simply not be able to keep up with bacteria evolution.

To avoid the continual process of synthesizing new antibiotics to target bacteria as they evolve, Penn Engineers have looked at a new, natural resource for antibiotic molecules.

César de la Fuente, Ph.D.

A recent study on the search for encrypted peptides with antimicrobial properties in the human proteome has located naturally occurring antibiotics within our own bodies. By using an algorithm to pinpoint specific sequences in our protein code, a team of Penn researchers along with collaborators, led by César de la Fuente, Presidential Assistant Professor in Psychiatry, Bioengineering, Microbiology, and Chemical and Biomolecular Engineering, and Marcelo Torres, a post doc in de la Fuente’s lab, were able to locate novel peptides, or amino acid chains, that when cleaved, indicated their potential to fend off harmful bacteria.

Now, in a new study published in ACS Nano, the team along with Angela Cesaro, the lead author and post doc in de la Fuente’s lab, have identified three distinct antimicrobial peptides derived from a protein in human plasma and demonstrate their abilities in mouse models. Angela Cesaro performed a great part of the activities during her PhD under the supervision of corresponding author, Professor Angela Arciello, from the University of Naples Federico II. The collaborative study also includes Utrecht University in the Netherlands.

“We identified the cardiovascular system as a hot spot for potential antimicrobials using an algorithmic approach,” says de la Fuente. “Then we looked closer at a specific protein in the plasma.”

Read the full story in Penn Engineering Today.

Guest Post: Learning About Regulatory Affairs Through a Virtual Internship

by Casey Colleran (BSE 2021, MSE 2022)

In this guest post, recent Penn Bioengineering graduate and master’s student Casey Colleran writes about her experience in virtual internship at Janssen Pharmaceuticals.

Casey Colleran

During the summer of 2020, I was privileged enough to join the Global Regulatory Affairs team at Janssen Pharmaceutical Companies of Johnson & Johnson. Despite the uncertainties brought on by COVID-19, Janssen was able to bring together a group of five interns to participate in this virtual internship. This remote opportunity provided me with a valuable understanding of Regulatory Affairs, and the pharmaceutical industry. Throughout the 11 weeks, I was able to work alongside Regulatory Scientists in several functional areas of the organization. I learned about the regulations that govern the pharmaceutical industry, and the strategy that goes into communicating with the FDA and other health authorities.

As we rotated through each of these functional areas, myself and the other interns were also able to observe how the pandemic impacted the organization. We were asked to develop our own solutions on how to address these new challenges. Through this task, I learned how to present information in a meaningful way, analyze anecdotal data, improve processes, and communicate across different networks. As a team, myself and four other interns developed probing questions to help us understand how the COVID-19 pandemic has impacted the regulatory landscape, and the different strengths and opportunities employees observed in Janssen’s response to the pandemic. As we rotated through the different functional areas of Janssen’s Global Regulatory Affairs group, we used that time to ask our questions, and make note of anecdotal data that would provide us more insight as to how to address the new challenges brought on by the pandemic, and the virtual work environment. We then created a “COVID-19 Playbook” which broke down the main themes we had heard in our responses, such as the need for a more flexible organization, more efficient and effective communication, improved connectivity in the virtual workplace, and more. We developed suggestions on programming and guidelines that would help strengthen each of these areas, and presented these suggestions to the Senior Leadership Team.

Summer 2020 Janssen interns

Leadership development opportunities were also focal to the internship. I was paired with several amazing mentors who provided me with personalized feedback on how to become a more effective leader. The culture of the organization was extremely welcoming, and I cherish the relationships that I was able to build with my colleagues, so much so that I joined Janssen as a part time contractor this past year. Through this role as a contractor, I have been able to learn more about the day-to-day activities of a Regulatory Scientist through hands-on activities. As a contractor, I have been an integral part of a new “FLEx” Program. As a part of this program, I offer support to Regulatory Scientists by taking on their more routine submissions, giving them the opportunity to work on more strategic based activities, and focus on their personal growth and learning. It has been such a wonderful experience to work closely with these Regulatory Scientists who are still early in their career, as we have been able to learn from each other as well. It has also given me a greater understanding of the regulatory landscape, and by taking part in this new program I again get to see much of my feedback be considered and implemented.

I am so grateful that I had the opportunity to work in such an amazing environment, developed so many skills, and built a network that led me to additional opportunities in Regulatory Affairs at Janssen.

Looking Towards the Future Through an Interdisciplinary Lens

by Erica K. Brockmeier

Yasmina Al Ghadban, a senior in the School of Engineering and Applied Science from Beirut, was able to connect her undergraduate education in bioengineering and psychology with her passion for public health through teaching, research, and extracurricular activities. Now, she is poised to leverage her “interdisciplinary lens” towards a future career in public health.

While reflecting on her undergraduate journey at Penn, senior Yasmina Al Ghadban says that she has a “ton of memories” she will take with her: lifelong friends made and skills developed through coursework, research, and teaching experiences, the chance to engage with public health communities on campus, and traveling for courses and internships. “That’s the beauty of Penn,” she says. “There’s just so many opportunities everywhere.”

As a double major in bioengineering and psychology, Al Ghadban, who is from Beirut, has certainly taken advantage of many such opportunities. Now, she is poised to leverage her “interdisciplinary lens” towards a future career in public health.

Problem-solving perspectives

Looking for a place to grow and become more independent, Al Ghadban decided to come to Penn after graduating from the International College in Lebanon. After taking an introduction to bioengineering course during her freshman year, she became enthralled by the hands-on nature of the program and enrolled in the School of Engineering and Applied Science. “I really enjoyed working with circuits and Arduino, being able to synthesize things, and I felt like being in engineering was the place where I was going to gain the most skills,” she says.

Al Ghadban is applying those skills as she completes her senior design project. She and a team of four seniors are building an autonomous robot equipped with Lidar sensors that it uses to create a map of a physical space. The team also programmed their robot to recognize high-touch surfaces that it then disinfects with UV light. “It’s a technology that is completely autonomous, cheaper than what’s on the market, and doesn’t put people at risk when they go in to disinfect,” she says. The team recently put the finishing touches on the project and presented their robot as part of a demonstration on April 14.

In addition to her degree in engineering, Al Ghadban’s interests in public and mental health spurred her to take courses and eventually pursue a double major in psychology, a field that she sees as complementary to engineering. “In psychology, we focus a lot on research and study design, research bias, and these things are similar in engineering and psychology,” she says. “Overall, I think they gave me different perspectives in terms of problem solving, and it’s nice to have that interdisciplinary lens.”

One place where Al Ghadban was able to use this interdisciplinary lens was while working as an research assistant in the Rehabilitation Robotics Lab with Michelle Johnson during her sophomore year. “The focus of the lab is to create robots for post-stroke rehabilitation, and the robotics part is very engineering-focused, but there is another part where people struggle doing the exercises,” she says. “Being able to engage with people and increasing their likelihood of doing that intervention, you rely on a lot from psychology, like interventions from positive psychology or research on how people stay engaged.”

Continue reading at Penn Today.

Five Tips to Stay Positive and Healthy During Social Isolation

Though the coronavirus situation is changing daily, even hourly, by now the need for physical separation from those not in your household is clear. That doesn’t mean it’s easy, says Penn psychologist Melissa Hunt.

“We’re social animals,” says Hunt, associate director of clinical training in Penn’s Psychology Department. “We have an entire neuroendocrine system that responds to touch and social proximity with people we care about, that contributes to our sense of well-being and connection in the world. Losing out on that is really hard.”

It’s also not something we’ve really been asked to do before, says Lyle Ungar, a Penn computer scientist who is part of the World Well-Being Project, an initiative that uses social media language to measure psychological well-being and physical health. “This is an experiment on a scale that we’ve never seen in the United States,” he says.

Ungar and Hunt offer some suggestions to stay positive and healthy in the face of this new social isolation.

1. Maintain a connection with the people you love, even if it can’t be a physical one. 

“Social distance does not mean no social contact,” Ungar says. Psychologically, face-to-face conversations are best, but right now they’re not likely possible. Instead, Ungar suggests video calls. “They’re second best in terms of emotional bonding,” he says. “Phone calls aren’t as good as video chats, and texting is even worse. But of course, being totally isolated is the worst.”

Read the full five tips at Penn Today. Media contact Michele W. Berger.

Melissa G. Hunt is the associate director of clinical training in the Department of Psychology in the School of Arts and Sciences at the University of Pennsylvania

Lyle Ungar is a professor in the departments of Bioengineering and Computer and Information Science in the School of Engineering and Applied Science, in the Graduate Group in Genomics and Computational Biology in the Perelman School of Medicine, in the Department of Operations, Information, and Decisions in the Wharton School, and in the Department of Psychology in the School of Arts and Sciences.