Jenny Jiang Wins CZI Grant to Investigate the Potential Trigger for Neurodegenerative Diseases

Jenny Jiang, Ph.D.

TDP-43 may be one of the most dangerous proteins in the human body, implicated in neurodegenerative conditions like ALS and Alzheimer’s disease. But the protein remains mysterious: how TDP-43 interacts with the immune system, for instance, is still unclear. 

Now, Ning Jenny Jiang, J. Peter and Geri Skirkanich Associate Professor of Innovation in Bioengineering, has been selected for the Collaborative Pairs Pilot Project Awards, sponsored by the Chan Zuckerberg Initiative (CZI), to investigate the relationship between TDP-43 and the immune system. 

Launched in 2018, the Collaborative Pairs Pilot Project Awards support pairs of investigators to explore “innovative, interdisciplinary approaches to address critical challenges in the fields of neurodegenerative disease and fundamental neuroscience.” Professor Jiang will partner with Pietro Fratta, MRC Senior Clinical Fellow and MNDA Lady Edith Wolfson Fellow at the University College London Queen Square Institute of Neurology.

The TDP-43 protein is associated with neurodegenerative diseases affecting the central nervous system, including ALS and Alzehimer’s disease. While the loss of neurons and muscle degeneration cause the progressive symptoms, the diseases themselves may be a previously unidentified trigger for abnormal immune system activity. 

One possible link is the intracellular mislocalization of TDP-43 (known as TDP-43 proteinopathy), when the protein winds up in the wrong location, which the Jiang and Fratta Labs will investigate. Successfully proving this link could result in potentially game-changing new therapies for these neurodegenerative diseases. 

The Jiang Lab at Penn Engineering specializes in systems immunology, using high-throughput sequencing and single-cell and quantitative analysis to understand how the immune system develops and ages, as well as the molecular signatures of immune related diseases. Jiang joined Penn Bioengineering in 2021. 

Since arriving on campus, Jiang has teamed with the recently formed Penn Anti-Cancer Engineering Center (PACE), which seeks to understand the forces that determine how cancer grows and spreads, and Engineers in the Center for Precision Engineering (CPE4H), which focuses on innovations in diagnostics and delivery in the development of customizable biomaterials and implantable devices for individualized care. 

Jiang was elected a member of the American Institute for Medical and Biological Engineering (AIMBE) College of Fellows in 2021, and has previously won multiple prestigious awards including the NSF CAREER, a Cancer Research Institute Lloyd J. Old STAR Award, and a CZI Neurodegeneration Challenge Network Ben Barres Early Career Acceleration Award.

Jiang is a leader in high-throughput and high-dimensional analysis of T cells, a type of white blood cell crucial to the functioning of a healthy immune system. A recent study in Nature Immunology described the Jiang Lab’s TetTCR-SeqHD technology, the first approach to provide a multifaceted analysis of antigen-specific T cells in a high-throughput manner.

The CZI Collaborative Pairs Pilot Project Awards will provide $200,000 of funding over 18 months with a chance to advance to the second phase of $3.2 million in funding over a four-year period. 

Read the full list of grantees on the CZI’s Neurodegeneration Challenge Network (NDCN) Projects website here.

Student Spotlight: Cosette Tomita

Cosette TomitaCosette Tomita, a master’s student in Bioengineering, spoke with Penn Engineering Graduate Admissions about her research in cellular therapy and her path to Penn Engineering.

“What were you doing before you came to Penn Engineering? 

After college I wanted to get some industry experience before going to graduate school, so I spent a year working for a pharmaceutical company in New Jersey. I learned a lot—but mostly I learned that I wanted to go back into academia. So I was looking for a more research-oriented position to boost my graduate school applications, and I found a position at Penn’s cyclotron facility. Shortly after that, I applied to the master’s program. I’m still working at the cyclotron, so I’m doing the program part time. 

How has your experience in the program been so far? 

I love the research I’m doing here. I love the collaboration we have and the fact that I’m able to work with whoever I want to. And I can only say good things about my PI, Robert Mach. He’s a very busy man, but he makes time for his people. And he recognizes when somebody has a lot on their plate and he will go to bat for that person.

What’s your research all about? 

The focus of my PI’s lab is on neurodegenerative diseases and opiate use, so we’re looking to make imaging agents and antagonists that can help with the opioid crisis. 

For my project, I wanted to look at treating neurodegenerative disease from the perspective of cellular therapy. My PI doesn’t have that expertise, so when I came to him with this idea, he said I should talk to Mark Sellmyer in the bioengineering department. He does a lot of cellular therapies, cell engineering, protein engineering and things of that nature. So his lab is more biological. 

I don’t have a grant for my research, so my advisors are supporting it out of their own pockets. They could have said, no, you need to work on this project that’s already going on in the lab. But they gave me the intellectual freedom to do what I wanted to do.”

Read the full Q&A at the Penn Engineering Graduate Admissions website.

Mark Sellmeyer is Assistant Professor of Radiology in the Perelman School of Medicine and member of the Penn Bioengineering Graduate Group.

Jennifer Phillips-Cremins Wins CZI Grant to Study 3D Genome’s Role in Neurodegenerative Disease

The Chan Zuckerberg Initiative’s Collaborative Pairs Pilot Project Award is part of its Neurodegeneration Challenge Network

Jennifer Phillips-Cremins, Ph.D.

Read the full story on the Penn Engineering blog.

‘For Neurodegeneration, a Different Way to Slice the Pie’

Danielle Bassett, Ph.D.

Danielle Bassett, J. Peter Skirkanich Professor in the departments of Bioengineering and Electrical and Systems Engineering, has been called the “doyenne of network neuroscience.” The burgeoning field applies insights from the field of network science, which studies how the structure of networks relate to their performance, to the billions of neuronal connections that make up the brain.

Much of Basset’s research draws on mathematical and engineering principles to better understand how mental traits arise, but also applies them more broadly to other challenges in neuroscience.

In her latest paper, “Defining and predicting transdiagnostic categories of neurodegenerative disease,” published in the journal Nature Biomedical Engineering, Bassett collaborated with the Perelman School of Medicine’s Virginia Man-Yee Lee and John Trojanowski to provide a new perspective on the misfolded proteins associated with those diseases.

The researchers used machine learning techniques to create a new classification system for neurodegenerative diseases, one which may redraw the boundaries between them and help explain clinical differences in patients who received the same diagnoses.

BioWorld’s Anette Breindl spoke with Bassett about the team’s findings.

Now, investigators have developed a new approach to classifying neurodegenerative disorders that used the overall patterns of protein aggregation, rather than specific proteins, to define six clusters of patients that crossed traditional diagnostic categories.

“We find that perhaps the way that clinicians have been diagnosing these disorders… is not necessarily the way these disorders work,” Danielle Bassett told BioWorld. “The way we’ve been trying to carve nature at joints is not the way that nature has joints. The joints are elsewhere.”

Continue reading Breindl’s article, “For neurodegeneration, a different way to slice the pie,” at BioWorld.

Originally posted on the Penn Engineering blog. Media contact Evan Lerner.