Traumatic brain injury (TBI) has disabled 1 to 2% of the population, and one of their most common disabilities is problems with short-term memory. Electrical stimulation has emerged as a viable tool to improve brain function in people with other neurological disorders.
Now, a new study in the journal Brain Stimulation shows that targeted electrical stimulation in patients with traumatic brain injury led to an average 19% boost in recalling words.
Led by University of Pennsylvania psychology professor Michael Jacob Kahana, a team of neuroscientists studied TBI patients with implanted electrodes, analyzed neural data as patients studied words, and used a machine learning algorithm to predict momentary memory lapses. Other lead authors included Wesleyan University psychology professor Youssef Ezzyat and Penn research scientist Paul Wanda.
“The last decade has seen tremendous advances in the use of brain stimulation as a therapy for several neurological and psychiatric disorders including epilepsy, Parkinson’s disease, and depression,” Kahana says. “Memory loss, however, represents a huge burden on society. We lack effective therapies for the 27 million Americans suffering.”
Michael Kahana is the Edmund J. and Louise W. Kahn Term Professor of Psychology at the University of Pennsylvania. He is a member of the Penn Bioengineering Graduate Group.
Artificial intelligence is a new addition to the infectious disease researcher’s toolbox. Yet in merely half a decade, AI has accelerated progress on some of the most urgent issues in medical science and public health. Researchers in this field blend knowledge of life sciences with skill in computation, chemistry and design, satisfying decades-long appeals for interdisciplinary tactics to treat these disorders and stop their spread.
Diseases are “infectious” when they are caused by organisms, including parasites, viruses, bacteria and fungi. People and animals can contract infectious diseases from their environments or food, or through interactions with one another. Some, but not all, are contagious.
Infectious diseases are an intractable global challenge, posing problems that continue to grow in severity even as science has offered a steady pace of solutions. The world continues to become more interconnected, bringing people into new kinds and levels of relation, and the climate crisis is throwing environmental and ecological networks out of balance. Diseases that were once treatable by drugs have become resistant, and new drug discovery is more costly than ever. Uneven resource distribution means that certain parts of the world are perennial hotspots for diseases that others never fear.
In the paper, de la Fuente and co-authors assess the progress, limitations and promise of research in AI and infectious diseases in three major areas of inquiry: anti-infective drug discovery, infection biology, and diagnostics for infectious diseases.
Bioengineering researchers at Children’s Hospital of Philadelphia are developing a less invasive and quicker method to create cartilage implants as an alternative to the current treatment for severe subglottic stenosis, which occurs in 10 percent of premature infants in the U.S.
Subglottic stenosis is a narrowing of the airway, in response to intubation. Severe cases require laryngotracheal reconstruction that involves grafting cartilage from the rib cage with an invasive surgery. With grant support from the National Institutes of Health, Riccardo Gottardi, PhD, who leads the Bioengineering and Biomaterials (Bio2) Lab at CHOP, is refining a technology called Meniscal Decellularized scaffold (MEND). Working with a porcine model meniscus, the researchers remove blood vessels and elastin fibers to create pathways that allow for recellularization. Dr. Gottardi and his team then harvest ear cartilage progenitor cells (CPCs) with a minimally invasive biopsy, combine them with MEND, and create cartilage implants that could be a substitute for the standard laryngotracheal reconstruction.
While laryngotracheal reconstruction in the adult population has a success rate of up to 96%, success rates in children range from 75% to 85%, and children often require revision surgery due to a high incidence of restenosis. The procedure also involves major surgery to remove cartilage from the rib cage, which is more difficult for childrens’ smaller bodies.
“Luckily not many children suffer from severe subglottic stenosis, but for those who do, it is really serious,” said Dr. Gottardi, who also is assistant professor in the Department of Pediatrics and Department of Bioengineering at CHOP and the University of Pennsylvania. “With our procedure, we have an easily accessible source for the cartilage and the cells, providing a straightforward and noninvasive treatment option with much potential.”
Riccardo Gottardi is an Assistant Professor in the Department of Pediatrics, Division of Pulmonary Medicine in the Perelman School of Medicine and in the Department of Bioengineering in the School of Engineering and Applied Science. He also holds an appointment in the Children’s Hospital of Philadelphia (CHOP).
Paul Gehret is a Ph.D. student in Bioengineering, an Ashton Fellow and a NSF Fellow. His research focuses on leveraging decellularized cartilage scaffolds and novel cell sources to reconstruct the pediatric airway.
For decades, LGBTQ+ patients have faced stringent requirements to donate blood—most gay and bisexual men were not allowed to donate at all. Now, however, many more of them will be able to give this selfless gift. The U.S. Food and Drug Administration, which regulates blood donation in this country, has reworked the donor-screening criteria, and in the process opened the door to donation for more Americans.
The previous restriction on accepting blood from men who have sex with men (MSM) dates back to the early days of the AIDS epidemic, when blood donations weren’t able to be screened for HIV, leading to cases of transfusion-transmitted HIV. In 1985, the FDA instituted a lifetime ban on blood donation for MSM, effectively preventing gay and bisexual men from donating. (Also included were women who have sex with MSM.)
Twenty years later, the agency rescinded the ban—but added a restriction that only MSM who had been abstinent from sex for at least one year could donate. In 2020, the FDA shortened the “deferral” period to 90 days of abstinence. While the changes were welcome news for those who had been unable to donate, they still prevented many MSM from giving blood. As he wrote in an op-ed for the Philadelphia Inquirer last year, Kevin B. Johnson,the David L. Cohen University Professor with appointments in the School of Engineering and Applied Science, the Perelman School of Medicine, and Annenberg School for Communication, was one of them. He and his husband were shocked to learn when they went to donate blood during a shortage early in the COVID-19 pandemic, that despite being married and monogamous for close to 17 years, they could not donate unless they were celibate for three months.
“It is time to move quickly to a policy under which all donors are evaluated equally and fairly, and to encourage local blood collection facilities to comply with that policy,” Johnson wrote last year.
Now, such changes are underway. As the pandemic wound down, the FDA moved forward with plans to re-evaluate its donation criteria. The first big change was removal of an indefinite ban on people who lived in or spent significant amounts of time in the United Kingdom, Ireland, and France, a measure that aimed to protect the U.S. blood supply against Creutzfeldt-Jakob disease (CJD; also known as “mad cow disease”), a terminal brain condition caused by hard-to-detect prions that occurred in those countries in the 1980s and 1990s.
Extensive and careful evaluation of epidemiological studies and statistical analysis has shown that the risk of CJD transmission is no longer a concern. The changes to eligibility for LGBTQ+ patients are related to advances in medical and social science, and have also been very thoroughly studied to ensure that the changes will maintain the safety of the blood supply without being discriminatory.
“In the decades since HIV was first recognized, there have been advances in testing methods for detection of the virus, changes in how we process blood products, public health advances, and extensive study of the evolving risk of disease transmission given these advances,” says Sarah Nassau,vice chair of pathology and laboratory medicine at Lancaster General Hospital.
They also draw on rethinking the reliability of the guidelines. For example, while the rules partially or fully prevented gay and bisexual men from donating blood, they did not erect similar barriers to other people engaging in anal sex, or people who have multiple partners.
“Specifying the sexual orientation of the person rather than a behavior in which they engaged was discriminatory and not evidence based,” points out Judd David Flesch, vice chief of inpatient operations in the Department of Medicine at Penn Presbyterian Medical Center and co-director of the Penn Medicine Program for LGBT Health.
Kevin Johnson is the David L. Cohen University of Pennsylvania Professor in the Departments of Biostatistics, Epidemiology and Informatics and Computer and Information Science. As a Penn Integrates Knowlegde (PIK) University Professor, Johnson also holds appointments in the Departments of Bioengineering and Pediatrics, as well as in the Annenberg School of Communication.
Multiple myeloma is an incurable bone marrow cancer that kills over 100,000 people every year. Known for its quick and deadly spread, this disease is one of the most challenging to address. As these cancer cells move through different parts of the body, they mutate, outpacing possible treatments. People diagnosed with severe multiple myeloma that is resistant to chemotherapy typically survive for only three to six months. Innovative therapies are desperately needed to prevent the spread of this disease and provide a fighting chance for those who suffer from it.
Michael Mitchell, J. Peter and Geri Skirkanich Assistant Professor of Innovation in Bioengineering (BE), and Christian Figueroa-Espada, doctoral student in BE at the University of Pennsylvania School of Engineering and Applied Science, created an RNA nanoparticle therapy that makes it impossible for multiple myeloma to move and mutate. The treatment, described in their study published in PNAS, turns off a cancer-attracting function in blood vessels, disabling the pathways through which multiple myeloma cells travel.
By shutting down this “chemical GPS” that induces the migration of cancer cells, the team’s therapy stops the spread of multiple myeloma, helping to eliminate it altogether.
Thank you to everyone who attended the 2023 Department of Bioengineering Juneteenth Address. For those who were unable to attend or who may wish to share the opportunity to view the lecture, a recording of Dr. Kevin Johnson’s talk, “A White Neighbor, a Black Surgeon, and a Mormon Computer Scientist Walk into a Bar…” is available below.
Speaker: Kevin B. Johnson, MD, MS, FAAP, FAMIA, FACMI
David L. Cohen University Professor
Computer and Information Science
Biostatistics, Epidemiology and Informatics
Bioengineering
Annenberg School for Communication
Pediatrics
VP for Applied Informatics (UPHS), University of Pennsylvania
Abstract:
As we recognize Juneteenth, a holiday that brings awareness to what journalist Corey Mitchell calls “…a complex understanding of the nation’s past,” we also need to understand how many of our neighbors, staff, and faculty — even those born in the last 100 years — continue to navigate through the environment that made Juneteenth remarkable. In this talk, Dr. Johnson shares a bit of his personal story and how this story informs his national service and passion for teaching.
We hope you will join us for the 2023 Department of Bioengineering Juneteenth Address by Dr. Kevin B. Johnson.
Date: Wednesday, June 14, 2023
Start Time: 11:00 AM ET
Location: Berger Auditorium (Skirkanich Hall basement room 013)
Zoom link
Meeting ID: 925 0325 6013
Passcode: 801060
Following the event, a limited number of box lunches will be available for in-person attendees. If you would like a box lunch, please RSVP here by Monday, June 12 so we can get an accurate headcount.
Speaker: Kevin B. Johnson, MD, MS, FAAP, FAMIA, FACMI
David L. Cohen University Professor
Annenberg School for Communication, Bioengineering, Biostatistics, Epidemiology and Informatics, Computer and Information Science, Pediatrics
VP for Applied Informatics (UPHS), University of Pennsylvania
Title: “A White Neighbor, a Black Surgeon, and a Mormon Computer Scientist Walk into a Bar…”
Abstract: As we recognize Juneteenth, a holiday that brings awareness to what journalist Corey Mitchell calls “…a complex understanding of the nation’s past”, we also need to understand how many of our neighbors, staff, and faculty—even those born in the last 100 years—continue to navigate through the environment that made Juneteenth remarkable. Dr. Johnson will share a bit of his personal story and how this story informs his national service and passion for teaching.
Bio: Dr. Johnson is a leader of medical information technologies to improve patient care and safety. He is well regarded and widely known for pioneering discoveries in clinical informatics, leading to advances in data acquisition, medication management, and information aggregation in medical settings.
He is a board-certified pediatrician who has aligned the powers of medicine, engineering and technology to improve the health of individuals and communities. In work that bridges biomedical informatics, bioengineering and computer science, he has championed the development and implementation of clinical information systems and artificial intelligence to drive medical research. He has encouraged the effective use of technology at the bedside, and he has empowered patients to use new tools that help them to understand how medications and supplements may affect their health. He is interested in using advanced technologies such as smart devices and in developing computer-based documentation systems for the point of care. He also is an emerging champion of the use of digital media to enhance science communication, with a successful feature-length documentary describing health information exchange, a podcast (Informatics in the Round) and most recently, a children’s book series aimed at STEM education featuring scientists underrepresented in healthcare.
Dr. Johnson holds joint appointments in the Department of Computer and Information Science of the School of Engineering and Applied Science, and secondary appointments in Bioengineering and the Annenberg School for Communication. He serves as Vice President for Applied Informatics in the University of Pennsylvania Health System and as a Professor of Pediatrics at the Children’s Hospital of Philadelphia.
Before arriving at Penn, he served as the Cornelius Vanderbilt Professor and Chair of the Department of Biomedical Informatics at the Vanderbilt University School of Medicine, where he had taught since 2002. As Senior Vice President for Health Information Technology at the Vanderbilt University Medical Center, he led the development of clinical systems that enabled doctors to make better treatment and care decisions for individual patients, and introduced new systems to integrate artificial intelligence into patient care workflows.
The author of more than 150 publications, Dr. Johnson has held numerous leadership positions in the American Medical Informatics Association and the American Academy of Pediatrics. He leads the American Board of Pediatrics Informatics Advisory Committee, directs the Board of Scientific Counselors of the National Library of Medicine, and is a member of the NIH Council of Councils. He is an elected member of the National Academy of Medicine, American College of Medical Informatics and Academic Pediatric Society. He has received awards from the Robert Wood Johnson Foundation and American Academy of Pediatrics, among many others.
They will conduct research, pursue graduate degrees, or teach English in Belgium, Brazil, Colombia, Denmark, Ecuador, Estonia, France, Germany, Guatemala, India, Israel, Latvia, Mexico, Nepal, New Zealand, the West Bank-Palestine territories, South Korea, Spain, Switzerland, Taiwan, and Thailand.
The Fulbright Program is the United States government’s flagship international educational exchange program, awarding grants to fund as long as 12 months of international experience.
Among the Penn Fulbright grant recipients for 2023-24 is Ella Atsavapranee, from Cabin John, Maryland, who graduated in May with a bachelor’s degree in bioengineering from the School of Engineering and Applied Science and a minor in chemistry from the College. She was offered a Fulbright to conduct research at the École Polytechnique Fédérale de Lausanne in Switzerland.
At Penn, Atsavapranee worked with Michael Mitchell, J. Peter and Geri Skirkanich Assistant Professor in Bioengineering, engineering lipid nanoparticles to deliver proteases that inhibit cancer cell proliferation. She has also worked with Shan Wang, Leland T. Edwards Professor in the School of Engineering and Professor of Electrical Engineering at Stanford University, using bioinformatics to discover blood biomarkers for cancer detection. To achieve more equitable health care, she worked with Lisa Shieh, Clinical Professor in Medicine at the Stanford School of Medicine, to evaluate an AI model that predicts risk of hospital readmission and study how room placement affects patient experience.
Outside of research, Atsavapranee spread awareness of ethical issues in health care and technology as editor-in-chief of the Penn Bioethics Journaland a teaching assistant for Engineering Ethics (EAS 2030). She was also a Research Peer Advisor for the Penn Center for Undergraduate Research & Fellowships (CURF), a student ambassador for the Office of Admissions, and a volunteer for Service Link, Puentes de Salud, and the Hospital of the University of Pennsylvania. She plans to pursue a career as a physician-scientist to develop and translate technologies that are more affordable and accessible to underserved populations.
Read the full list of Penn Fulbright grant recipients for 2023-24 in Penn Today.
Infections caused by fungi, such as Candida albicans, pose a significant global health risk due to their resistance to existing treatments, so much so that the World Health Organization has highlighted this as a priority issue.
Although nanomaterials show promise as antifungal agents, current iterations lack the potency and specificity needed for quick and targeted treatment, leading to prolonged treatment times and potential off-target effects and drug resistance.
“Candida forms tenacious biofilm infections that are particularly hard to treat,” Koo says. “Current antifungal therapies lack the potency and specificity required to quickly and effectively eliminate these pathogens, so this collaboration draws from our clinical knowledge and combines Ed’s team and their robotic expertise to offer a new approach.”
The team of researchers is a part of Penn Dental’s Center for Innovation & Precision Dentistry, an initiative that leverages engineering and computational approaches to uncover new knowledge for disease mitigation and advance oral and craniofacial health care innovation.
For this paper, published in Advanced Materials, the researchers capitalized on recent advancements in catalytic nanoparticles, known as nanozymes, and they built miniature robotic systems that could accurately target and quickly destroy fungal cells. They achieved this by using electromagnetic fields to control the shape and movements of these nanozyme microrobots with great precision.
“The methods we use to control the nanoparticles in this study are magnetic, which allows us to direct them to the exact infection location,” Steager says. “We use iron oxide nanoparticles, which have another important property, namely that they’re catalytic.”
Other authors include Min Jun Oh, Alaa Babeer, Yuan Liu, Zhi Ren, Zhenting Xiang, Yilan Miao, and Chider Chen of Penn Dental; and David P. Cormode and Seokyoung Yoon of the Perelman School of Medicine. Cormode also holds a secondary appointment in Bioengineering.
This research was supported in part by the National Institute for Dental and Craniofacial Research (R01 DE025848, R56 DE029985, R90DE031532 and; the Basic Science Research Program through the National Research Foundation of Korea of the Ministry of Education (NRF-2021R1A6A3A03044553).
Neil Sheppard, Adjunct Associate Professor of Pathology and Laboratory Medicine in the Perelman School of Medicine, and David Mai, a Bioengineering graduate student in the School of Engineering and Applied Science, explained the findings of their recent study, which offered a potential strategy to improve T cell therapy in solid tumors, to the European biotech news website Labiotech.