Blood Test May Help Doctors Catch Pancreatic Cancer Early

A blood test may be able to detect the most common form of pancreatic cancer while it is still in its early stages while also helping doctors accurately stage a patient’s disease and guide them to the appropriate treatment. A multidisciplinary study found the test—known as a liquid biopsy—was more accurate at detecting disease in a blinded study than any other known biomarker alone, and was also more accurate at staging disease than imaging is capable of alone. The team, which includes researchers from the Perelman School of Medicine, the Abramson Cancer Center, and the School of Engineering and Applied Science, published their findings in Clinical Cancer Research, a journal of the American Association for Cancer Research.

Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is the third leading cause of cancer deaths. The overall five-year survival rate is just 9%, and most patients live less than one year following their diagnosis. One of the biggest challenges is catching the disease before it has progressed or spread. If the disease is caught early, patients may be candidates for surgery to remove the cancer, which can be curative. For locally advanced patients—meaning patients whose cancer has not spread beyond the pancreas but who are not candidates for surgery based on the size or location of the tumor—treatment involves three months of systemic therapy like chemo or radiation, then reassessing to see if surgery is an option. For patients whose disease has spread, there are currently no curative treatment options.

“Right now, the majority of patients who are diagnosed already have metastatic disease, so there is a critical need for a test that can not only detect the disease earlier but also accurately tell us who might be at a point where we can direct them to a potentially curative treatment,” says the study’s co-senior author Erica L. Carpenter, director of the Liquid Biopsy Laboratory and a research assistant professor of medicine. The study’s other co-senior author is David Issadore, an associate professor of bioengineering and electrical and systems engineering.

Read more at Penn Medicine News.

Read more about Penn’s pancreatic cancer research here. 

Penn Bioengineering and COVID-19

A message from Penn Bioengineering Professor and Chair Ravi Radhakrishnan:

In response to the unprecedented challenges presented by the global outbreak of the novel coronavirus SARS-CoV-2, Penn Bioengineering’s faculty, students, and staff are finding innovative ways of pivoting their research and academic projects to contribute to the fight against COVID-19. Though these projects are all works in progress, I think it is vitally important to keep those in our broader communities informed of the critical contributions our people are making. Whether adapting current research to focus on COVID-19, investing time, technology, and equipment to help health care infrastructure, or creating new outreach and educational programs for students, I am incredibly proud of the way Penn Bioengineering is making a difference. I invite you to read more about our ongoing projects below.

RESEARCH

Novel Chest X-Ray Contrast

David Cormode, Associate Professor of Radiology and Bioengineering

Nanomedicine and Molecular Imaging Lab

Peter Noel, Assistant Professor of Radiology and BE Graduate Group Member

Laboratory for Advanced Computed Tomography Imaging

The Cormode and Noel labs are working to develop dark-field X-ray imaging, which may prove very helpful for COVID patients. It involves fabricating diffusers that incorporate gold nanoparticles to modify the X-ray beam. This method gives excellent images of lung structure. Chest X-ray is being used on the front lines for COVID patients, and this could potentially be an easy to implement modification of existing X-ray systems. The additional data give insight into the health state of the microstructures (alveoli) in the lung. This new contrast mechanics could be an early insight into the disease status of COVID-19 patients. For more on this research, see Cormode and Noel’s chapter in the forthcoming volume Spectral, Photon Counting Computed Tomography: Technology and Applications, edited by Katsuyuki Taguchi, Ira Blevis, and Krzysztof Iniewski (Routledge 2020).

Immunotherapy

Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering

Mitchell Lab

Mike Mitchell is working with Saar Gill (Penn Medicine) on engineering drug delivery technologies for COVID-19 mRNA vaccination. He is also developing inhalable drug delivery technologies to block COVID-19 internalization into the lungs. These new technologies are adaptations of prior research published Volume 20 of Nano Letters (“Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering” January 2020) and discussed in Volume 18 of Nature Reviews Drug Discovery (“Delivery Technologies for Cancer Immunotherapy” January 2019).

Respiratory Distress Therapy Modeling

Ravi Radhakrishnan, Professor, and Chair of Bioengineering and Professor of Chemical and Biomolecular Engineering

Radhakrishnan Lab

Computational Models for Targeting Acute Respiratory Distress Syndrome (ARDS). The severe forms of COVID-19 infections resulting in death proceeds by the propagation of the acute respiratory distress syndrome or ARDS. In ARDS, the lungs fill up with fluid preventing oxygenation and effective delivery of therapeutics through the inhalation route. To overcome this major limitation, delivery of antiinflammatory drugs through the vasculature (IV injection) is a better approach; however, the high injected dose required can lead to toxicity. A group of undergraduate and postdoctoral researchers in the Radhakrishnan Lab (Emma Glass, Christina Eng, Samaneh Farokhirad, and Sreeja Kandy) are developing a computational model that can design drug-filled nanoparticles and target them to the inflamed lung regions. The model combines different length-scales, (namely, pharmacodynamic factors at the organ scale, hydrodynamic and transport factors in the tissue scale, and nanoparticle-cell interaction at the subcellular scale), into one integrated framework. This targeted approach can significantly decrease the required dose for combating ARDS. This project is done in collaboration with Clinical Scientist Dr. Jacob Brenner, who is an attending ER Physician in Penn Medicine. This research is adapted from prior findings published in Volume 13, Issue 4 of Nanomedicine: Nanotechnology, Biology and Medicine: “Mechanisms that determine nanocarrier targeting to healthy versus inflamed lung regions” (May 2017).

Diagnostics

Sydney Shaffer, Assistant Professor of Bioengineering and Pathology and Laboratory Medicine

Syd Shaffer Lab

Arjun Raj, Professor of Bioengineering

Raj Lab for Systems Biology

David Issadore, Associate Professor of Bioengineering and Electrical and Systems Engineering

Issadore Lab

Arjun Raj, David Issadore, and Sydney Shaffer are working on developing an integrated, rapid point-of-care diagnostic for SARS-CoV-2 using single molecule RNA FISH. The platform currently in development uses sequence specific fluorescent probes that bind to the viral RNA when it is present. The fluorescent probes are detected using a iPhone compatible point-of-care reader device that determines whether the specimen is infected or uninfected. As the entire assay takes less than 10 minutes and can be performed with minimal equipment, we envision that this platform could ultimately be used for screening for active COVID19 at doctors’ offices and testing sites. Support for this project will come from a recently-announced IRM Collaborative Research Grant from the Institute of Regenerative Medicine with matching funding provided by the Departments of Bioengineering and Pathology and Laboratory Medicine in the Perelman School of Medicine (PSOM) (PI’s: Sydney Shaffer, Sara Cherry, Ophir Shalem, Arjun Raj). This research is adapted from findings published in the journal Lab on a Chip: “Multiplexed detection of viral infections using rapid in situ RNA analysis on a chip” (Issue 15, 2015). See also United States Provisional Patent Application Serial No. 14/900,494 (2014): “Methods for rapid ribonucleic acid fluorescence in situ hybridization” (Inventors: Raj A., Shaffer S.M., Issadore D.).

HEALTH CARE INFRASTRUCTURE

Penn Health-Tech Coronavirus COVID-19 Collaborations

Brian Litt, Professor of Bioengineering, Neurology, and Neurosurgery

Litt Lab

In his role as one of the faculty directors for Penn Health-Tech, Professor Brian Litt is working closely with me to facilitate all the rapid response team initiatives, and in helping to garner support the center and remove obstacles. These projects include ramping up ventilator capacity and fabrication of ventilator parts, the creation of point-of-care ultrasounds and diagnostic testing, evaluating processes of PPE decontamination, and more. Visit the Penn Health-Tech coronavirus website to learn more, get involved with an existing team, or submit a new idea.

BE Labs COVID-19 Efforts

BE Educational Labs Director Sevile Mannickarottu & Staff

BE Educational Labs staff members Dana Abulez (BE ’19, Master’s BE ’20) and Matthew Zwimpfer (MSE ’18, Master’s MSE ’19) take shifts to laser-cut face shields.

The George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace staff have donated their PPE to Penn Medicine. Two staff members (Dana Abulez, BE ’19, Master’s BE ’20 and Matthew Zwimpfer, MSE ’18, Master’s MSE ’19) took shifts to laser-cut face shields in collaboration with Penn Health-Tech. Dana and Matthew are also working with Dr. Matthew Maltese on his low-cost ventilator project (details below).

Low-Cost Ventilator

Matthew Maltese, Adjunct Professor of Medical Devices and BE Graduate Group Member

Children’s Hospital of Philadelphia Center for Injury Research and Prevention (CIRP)

Dr. Maltese is rapidly developing a low-cost ventilator that could be deployed in Penn Medicine for the expected surge, and any surge in subsequent waves. This design is currently under consideration by the FDA for Emergency Use Authorization (EUA). This example is one of several designs considered by Penn Medicine in dealing with the patient surge.

Face Shields

David F. Meaney, Solomon R. Pollack Professor of Bioengineering and Senior Associate Dean

Molecular Neuroengineering Lab

Led by David Meaney, Kevin Turner, Peter Bruno and Mark Yim, the face shield team at Penn Health-Tech is working on developing thousands of rapidly producible shields to protect and prolong the usage of Personal Protective Equipment (PPE). Learn more about Penn Health-Tech’s initiatives and apply to get involved here.

Update 4/29/20: The Penn Engineering community has sprung into action over the course of the past few weeks in response to COVID-19. Dr. Meaney shared his perspective on those efforts and the ones that will come online as the pandemic continues to unfold. Read the full post on the Penn Engineering blog.

OUTREACH & EDUCATION

Student Community Building

Yale Cohen, Professor of Otorhinolaryngology, Department of Psychology, BE Graduate Group Member, and BE Graduate Chair

Auditory Research Laboratory

Yale Cohen, and Penn Bioengineering’s Graduate Chair, is working with Penn faculty and peer institutions across the country to identify intellectually engaging and/or community-building activities for Bioengineering students. While those ideas are in progress, he has also worked with BE Department Chair Ravi Radhakrishnan and Undergraduate Chair Andrew Tsourkas to set up a dedicated Penn Bioengineering slack channel open to all Penn Bioengineering Undergrads, Master’s and Doctoral Students, and Postdocs as well as faculty and staff. It has already become an enjoyable place for the Penn BE community to connect and share ideas, articles, and funny memes.

Undergraduate Course: Biotechnology, Immunology, Vaccines and COVID-19 (ENGR 35)

Daniel A. Hammer, Alfred G. and Meta A. Ennis Professor of Bioengineering and Chemical and Biomolecular Engineering

The Hammer Lab

This Summer Session II, Professor Dan Hammer and CBE Senior Lecturer Miriam R. Wattenbarger will teach a brand-new course introducing Penn undergraduates to a basic understanding of biological systems, immunology, viruses, and vaccines. This course will start with the fundamentals of biotechnology, and no prior knowledge of biotechnology is necessary. Some chemistry is needed to understand how biological systems work. The course will cover basic concepts in biotechnology, including DNA, RNA, the Central Dogma, proteins, recombinant DNA technology, polymerase chain reaction, DNA sequencing, the functioning of the immune system, acquired vs. innate immunity, viruses (including HIV, influenza, adenovirus, and coronavirus), gene therapy, CRISPR-Cas9 editing, drug discovery, types of pharmaceuticals (including small molecule inhibitors and monoclonal antibodies), vaccines, clinical trials. Some quantitative principles will be used to quantifying the strength of binding, calculate the dynamics of enzymes, writing and solving simple epidemiological models, methods for making and purifying drugs and vaccines. The course will end with specific case study of coronavirus pandemic, types of drugs proposed and their mechanism of action, and vaccine development.
Update 4/29/20: Read the Penn Engineering blog post on this course published April 27, 2020.

Neuromatch Conference

Konrad Kording, Penn Integrates Knowledge University Professor of Bioengineering, Neuroscience, and Computer and Information Science

Kording Lab

Dr. Kording facilitated Neuromatch 2020, a large virtual neurosciences conferences consisting of over 3,000 registrants. All of the conference talk videos are archived on the conference website and Dr. Kording has blogged about what he learned in the course of running a large  conference entirely online. Based on the success of Neuromatch 1.0, the team are now working on planning Neuromatch 2.0, which will take place in May 2020. Dr. Kording is also working on facilitating the transition of neuroscience communication into the online space, including a weekly social (#neurodrinking) with both US and EU versions.

Neuromatch Academy

Konrad Kording, Penn Integrates Knowledge University Professor of Bioengineering, Neuroscience, and Computer and Information Science

Kording Lab

Dr. Kording is working to launch the Neuromatch Academy, an open, online, 3-week intensive tutorial-based computational neuroscience training event (July 13-31, 2020). Participants from undergraduate to professors as well as industry are welcome. The Neuromatch Academy will introduce traditional and emerging computational neuroscience tools, their complementarity, and what they can tell us about the brain. A main focus is not just on using the techniques, but on understanding how they relate to biological questions. The school will be Python-based making use of Google Colab. The Academy will also include professional development / meta-science, model interpretation, and networking sessions. The goal is to give participants the computational background needed to do research in neuroscience. Interested participants can learn more and apply here.

Journal of Biomedical Engineering Call for Review Articles

Beth Winkelstein, Vice Provost for Education and Eduardo D. Glandt President’s Distinguished Professor of Bioengineering

Spine Pain Research Lab

The American Society of Medical Engineers’ (ASME) Journal of Biomechanical Engineering (JBME), of which Dr. Winkelstein is an Editor, has put out a call for review articles by trainees for a special issue of the journal. The call was made in March 2020 when many labs were ramping down, and trainees began refocusing on review articles and remote work. This call continues the JBME’s long history of supporting junior faculty and trainees and promoting their intellectual contributions during challenging times.
Update 4/29/20: CFP for the special 2021 issue here.

Are you a Penn Bioengineering community member involved in a coronavirus-related project? Let us know! Please reach out to ksas@seas.upenn.edu.

 

 

Penn Bioengineering Former Postdoc Whelton Miller Appointed Assistant Professor Loyola University

 

Whelton Miller, Ph.D.

The Department of Bioengineering is proud to congratulate Whelton Miller, Ph.D., a former BE Postdoctoral Fellow, on his appointment as an Assistant Professor in the Department of Medicine in the Health Sciences Division at Loyola University. Miller’s appointment began in January 2020.

Miller received his B.S. in Biochemistry in 2001 from the University of Delaware where he worked under the supervision of Dr. Douglass F. Taber. After graduation, he worked in industry as a synthetic organic chemist for a pharmaceutical company. After three years of industry experience, he returned to academia to complete a Ph.D. in Theoretical/Computational Chemistry from the University of the Sciences in Philadelphia in 2012.

After graduate school, he was given a unique opportunity through Penn’s Postdoctoral Opportunities in Research and Teaching (PennPORT) program, an NIH-sponsored, Institutional Research and Academic Career Development Award (IRACDA) postdoctoral fellowship. In addition to Miller’s responsibilities through the PennPORT program, he served on the Biomedical Postdoctoral Council (BPC), as well as chair of the Engineering PostDoc Association (EpoD). He has worked closely with the Physician Scientist Training Program (PSTP) as a mentor to a high school student, as well as a program guest speaker. This allowed Miller to be a Postdoctoral Research Fellow in the Department of Bioengineering at Penn in the Radhakrishnan Lab – led by BE Department Chair Ravi Radhakrishnan – which focuses on the interface between chemical physics and molecular biology.

Miller has also gained experience in various affiliated appointments, serving as an Assistant Professor in the Department of Chemistry and Physics at Lincoln University (2015-2019), and is currently an Adjunct Assistant Professor in the Department of Chemical and Biomolecular Engineering (CBE) at Penn and an Adjunct Professor in Biomedical Engineering at the University of Ghana in Accra.

Miller joined Loyola University in Chicago, IL in the summer of 2019. Now in his new faculty position, Miller continues to work on collaborative research projects and include colleagues at Instituto Tecnológico de Santo Domingo, the University of Pennsylvania, Lincoln University, University of Ghana, and the University of the Sciences. His current research involves using computational chemistry techniques for theoretical design and study of organometallic and inorganic compounds, protein ligand interactions, and structural electronic effects. His goal is to employ several computational techniques to understand, as well as predict, molecular interactions, such as protein-ligand interactions and protein-protein interactions. Miller says he is always looking forward to more opportunities for minority student development and enrichment in the STEM-related disciplines. Congratulations, Dr. Miller!

 

Penn is fighting pancreatic cancer

A microscopic view of pancreatic adenocarcinoma. (Image: Emma Furth)

Swept up in a pancreatic cancer diagnosis is inevitably a sense of fear and sadness.

But at Penn, researchers are bringing new hope to this disease. And with patients like Nick Pifani, it’s clear that they’re moving in the right direction.

Pifani, from Delran, New Jersey, first noticed some lingering stomach upset in February 2017. He called his family doctor, concerned—especially given that he was an otherwise healthy marathon runner who was only 42. He was sent to a gastrointestinal specialist. A few weeks later, some crippling stomach pain sent him back to the emergency room and he received an MRI that showed a mass on his pancreas—Stage Three, inoperable, he was told.

He was treated with chemotherapy, along with radiation and, eventually, and after receiving advice from doctors at Penn, his tumor was removed. Thereafter, he realized he had a PALB2 mutation—a cousin of the BRCA gene mutation. At that moment, his long-term needs changed and he found himself seeking specialized care at Penn, where he met Kim Reiss Binder, assistant professor of medicine at the Hospital of the University of Pennsylvania (HUP).

“I’m a planner; I want to understand what [my] potential options are,” Pifani says. “[Reiss Binder] asked why I was there to see her and I explained and quickly I could tell she was—outside of her being remarkably intelligent—a great listener and a compassionate doctor.”

“I have a feeling she worries about me more than I do,” he laughs.

Pifani has now been in remission for two years and four months; he sees Reiss-Binder every three months for checkups. His survival story is inspiring and a sign of momentum, even if a world without pancreatic cancer is still frustratingly out of reach.

Pancreatic cancer at Penn

Pancreatic cancer is the third-leading cause of cancer-related death in the United States, outmatched only by lung cancer (No. 1) and colorectal cancer (No. 2). A person diagnosed with pancreatic cancer is still unlikely to survive past five years—only 9% of survivors do, giving it the highest mortality rate among every major cancer.

In short, pancreatic cancer seldom paves the way for optimistic narratives. Some of the hope that has surfaced, though, is thanks to some talent, dedication to the cause, and hard work at Penn.

A key point of progress in the battle against the disease was made in 2002, when former Assistant Professor of Medicine David Tuveson established a standard model for examining human development of this disease in mice. This model has allowed for a reliable way to study the disease and has influenced progress made here at Penn and elsewhere since.

“There’s been a burst of activity in translational research, from bench to bedside,” explains Ben Stanger, the Hanna Wise Professor in cancer research and director of the Penn Pancreatic Cancer Research Center (PCRC) at the Abramson Cancer Center.

“And there’s a lot of momentum with community building, a dramatic increase in patient volumes, and a dramatic increase in what we know about the cancer,” he says of the status of pancreatic cancer today.

Reiss Binder, meanwhile, explains that one mark of progress at Penn and beyond has been learning about people like Pifani, who have the PALB2 gene, and why they respond differently to treatments than those without it. Platinum-based chemotherapies, for example, are especially effective for people with the PALB2 gene who are battling pancreatic cancer. An ongoing trial at Penn has tested and found some success with using PARP inhibitors—taken orally as an enzyme that fixes single-stranded breaks of DNA—as a maintenance therapy in that same PALB2 demographic after they’ve had chemotherapy. These are less toxic than chemotherapy for patients with the same mutations.

It’s all been slow progress toward better treatments, but there has been progress.

“This is the tip of the iceberg for a disease that we historically have treated with perpetual chemotherapy,” Reiss Binder says. “We owe it to patients to find better options to suppress the cancer but not ruin their quality of life.”

Catching cancer earlier

The consensus on why pancreatic cancer is so deadly? It just can’t be spotted fast enough.

Pancreatic cancer often presents well after it has developed and metastasized, and does so in a way that is not easy to recognize as cancer. Common symptoms include, for example, stomach upset and back pain. And by the time a harder-to-ignore symptom of the cancer surfaces, a sort of yellowing of the skin (a result of a bile duct blockage), it’s likely too late to stop the cancer in its tracks.

One approach to improved detection being tested at Penn, by Research Assistant Professor of Medicine Erica Carpenter, is a liquid biopsy—drawn from a standard blood test. Current means to test for pancreatic cancer—imaging through an endoscopic tube—are invasive and expensive, meaning a common liquid test could transform how many cases are detected early.

Carpenter explains that circulating tumor cells (CTCs) can shed from a tumor that’s adjacent to the wall of a blood vessel; what’s shed then shows up in a blood test. The cells, if detected, can explain more about the nature of the tumor, giving doctors an opportunity to examine characteristics of cancerous cells and decide how to effectively treat a tumor if it can’t be surgically removed. It also allows interpretations of disease burden and the effectiveness of medications—through genome sequencing—that imaging does not.

Ultimately, this gives doctors the potential to track the growth of a tumor before it’s fully developed, all through one tube of blood—detected through an innovative use of technology.

 

David Issadore, Ph.D.

David Issadore, associate professor of bioengineering and electrical and systems engineering in the School of Engineering and Applied Science, has worked since 2017 to develop a chip that detects cancer in the blood, using machine learning to sort through literally hundreds of billions of vesicles and cells, looking for these CTCs. The chip retrieves data and the machine learning developed interprets that data, attempting to make a diagnosis that not only finds pancreatic cancer but also provides information about its progression—and, importantly, whether a patient might benefit from surgery.

Read the full story at Penn Today. Media contact Brandon Baker.

Student Spotlight: Raveen Kariyawasam

Raveen Kariyawasam (BSE & BS ’21)

The first in our new student spotlight series is junior Raveen Kariyawasam. Raveen (BSE & BS ’21) is a dual degree student in the School of Engineering and Applied Science and Wharton, studying Bioengineering, Finance, and Management.

 

 

 

 

What drew you to the field of Bioengineering?

Growing up in Sri Lanka and being surrounded by relatives who were doctors, I have been fascinated by both modern and traditional medicine. However, during physician shadowing in high school, I came to the realization that I was far more fascinated with the technology doctors use rather than practicing medicine. Therefore, I made the decision to turn down studying medicine in the U.K. and come to Penn to study Bioengineering in the hopes of being more hands-on with medical technology.

Have you done research with a professor on campus? What did you like, and what didn’t you like about it?

I currently work in the Interventional Radiology Lab at the Hospital of the University of Pennsylvania (HUP) under Assistant Professor of Radiology Chamith Rajapakse. The best thing about research here is that I get to be hands-on with some of the most cutting edge technology in the world and help pioneer medical diagnostic techniques that aren’t traditionally being used anywhere else. The only downside is that the learning curve can be a little too steep.

What have been some of your favorite courses and/or projects in Bioengineering so far?

Without a doubt, my favorite BE class has to be BE 309 (Bioengineering Modeling, Analysis and Design Laboratory I) and especially the Computer-Cockroach Interface we have to develop for this lab.

What advice would you give to your freshman self?

There are way too many things happening at a given time at Penn. Take it easy and plan it out so you can do everything you want to! It’s totally possible. Who says you can’t work hard and play hard?!

What do you hope to pursue after obtaining your undergraduate degree?

My hope is to head my own health-tech startup and create technologies that will aid developing countries, starting out with my humble island of Sri Lanka first.