Language in Tweets Offers Insight Into Community-level Well-being

In a Q&A, researcher Lyle Ungar discusses why counties that frequently use words like ‘love’ aren’t necessarily happier, plus how techniques from this work led to a real-time COVID-19 wellness map.

By Michele W. Berger

Lyle Ungar, Ph.D. (Photo: Eric Sucar)

People in different areas across the United States reacted differently to the threat of COVID-19. Some imposed strict restrictions, closing down most businesses deemed nonessential; others remained partially open.

Such regional distinctions are relatively easy to quantify, with their effects generally understandable through the lens of economic health. What’s harder to grasp is the emotional satisfaction and happiness specific to each place, a notion ’s has been working on for more than five years.

In 2017, the group published the , a free, interactive tool that displays characteristics of well-being by county based on Census data and billions of tweets. Recently, WWBP partnered with ’s Center for Digital Health to create a , which reveals in real time how people across the country perceive COVID-19 and how it’s affecting their mental health.

That map falls squarely in line with a paper published this week in the by computer scientist , one of the principal investigators of the World Well-Being Project, and colleagues from Stanford University, Stony Brook University, the National University of Singapore, and the University of Melbourne.

By analyzing 1.5 billion tweets and controlling for common words like “love” or “good,” which frequently get used to connote a missing aspect of someone’s life rather than a part that’s fulfilled, the researchers found they could discern subjective well-being at the county level. “We have a long history of collecting people’s language and asking people who are happier or sadder what words they use on Facebook and on Twitter,” Ungar says. “Those are mostly individual-level models. Here, we’re looking at community-level models.”

In a conversation with Penn Today, Ungar describes the latest work, plus how it’s useful in the time of COVID-19 and social distancing.

Read Ungar’s Q&A at .

Dr. Lyle Ungar is a Professor of Computer and Information Science and a member of the Department of Bioengineering Graduate Group.

Bomyi Lim Receives KIChE President Young Investigator

Bomyi Lim, Ph.D.

Bomyi Lim, Assistant Professor in the Department of Chemical Biomolecular Engineering, has been selected by the U.S. Chapter of the Korean Institute of Chemical Engineers (KIChE) as the recipient of the KIChE President Young Investigator Award. As a recipient of this Award, Lim will be invited to present a research talk at the KIChE Open Forum during the AIChE Conference.

KIChE is an organization that aims “to promote constructive and mutually beneficial interactions among Korean Chemical Engineers in the U.S. and facilitate international collaboration between engineers in the U.S. and Korea.”

Read more on the Penn Engineering blog. Dr. Lim is a member of the Department of Bioengineering Graduate Group.

The Optimal Immune Repertoire for Bacteria

by Erica K. Brockmeier

Transmission electron micrograph of multiple bacteriophages, viruses that infect bacteria, attached to a cell wall. New research describes how bacteria can optimize their “memory” of past viral infections in order to launch an effective immune response against a new invader. (Image: Graham Beards)

Before CRISPR became a household name as a tool for gene editing, researchers had been studying this unique family of DNA sequences and its role in the bacterial immune response to viruses. The region of the bacterial genome known as the CRISPR cassette contains pieces of viral genomes, a genomic “memory” of previous infections. But what was surprising to researchers is that rather than storing remnants of every single virus encountered, bacteria only keep a small portion of what they could hold within their relatively large genomes.

Work published in the Proceedings of the National Academy of Sciences provides a new physical model that explains this phenomenon as a tradeoff between how much memory bacteria can keep versus how efficiently they can respond to new viral infections. Conducted by researchers at the American Physical Society, Max Planck Institute, University of Pennsylvania, and University of Toronto, the model found an optimal size for a bacteria’s immune repertoire and provides fundamental theoretical insights into how CRISPR works.

In recent years, CRISPR has become the go-to biotechnology platform, with the potential to transform medicine and bioengineering. In bacteria, CRISPR is a heritable and adaptive immune system that allows cells to fight viral infections: As bacteria come into contact with viruses, they acquire chunks of viral DNA called spacers that are incorporated into the bacteria’s genome. When the bacteria are attacked by a new virus, spacers are copied from the genome and linked onto molecular machines known as Cas proteins. If the attached sequence matches that of the viral invader, the Cas proteins will destroy the virus.

Bacteria have a different type of immune system than vertebrates, explains senior author Vijay Balasubramanian, but studying bacteria is an opportunity for researchers to learn more about the fundamentals of adaptive immunity. “Bacteria are simpler, so if you want to understand the logic of immune systems, the way to do that would be in bacteria,” he says. “We may be able to understand the statistical principles of effective immunity within the broader question of how to organize an immune system.”

Read more on Penn Today.

Vijay Balasubramanian is the Cathy and Marc Lasry Professor in the Department of Physics and Astronomy in the School of Arts & Sciences at the University of Pennsylvania and a member of the Department of Bioengineering Graduate Group

This research was supported by the Simons Foundation (Grant 400425) and National Science Foundation Center for the Physics of Biological Function (Grant PHY-1734030). 

BE Welcomes New Grad Chair Dr. Yale Cohen

by Sophie Burkholder

Yale Cohen, Ph.D.

We would like to congratulate Dr. Yale Cohen, Ph.D., on his recent appointment as the new Graduate Group Chair for Penn’s Department of Bioengineering. The Graduate Group is a group of faculty that graduate students in bioengineering can choose from to collaborate with on lab research. The Group includes members from nearly all of Penn’s schools, including Penn Engineering, Penn Dental, Penn Medicine, Penn Vet, and the School of Arts and Sciences.

Dr. Cohen specializes in otorhinolaryngology as his primary department, with research areas in computational and experimental neuroengineering. He will take over the role of Graduate Group Chair from Dr. Ravi Radhakrishnan, Ph.D, professor of bioengineering and chemical and biomolecular engineering, whose research specializes in cellular, molecular, and theoretical and computational bioengineering. During his tenure as Graduate Group Chair, Dr. Radhakrishnan says that “the most enjoyable part was the student talks during bioengineering seminars, and the talks at the bioengineering graduate student research symposium,” noting the way they made him realize the “depth and breadth of our graduate group, and how accomplished our students are.”

Also during his time as chair, Dr. Radhakrishnan says he was proud to expand the course BE 699 — the Bioengineering Department’s required seminar for all Ph.D. candidates — to include discussions of leadership and soft-skills, as well as instituting individualized development plans to help students track their work. In looking forward to Dr. Cohen’s appointment to the role, Dr. Radhakrishnan says that he is “a natural and accomplished scientist, educator, and amazing leader who connects so readily and well with our students and faculty.”

Dr. Cohen, looking forward to taking on his new role, says that he hopes to improve programs like the Graduate Association of Bioengineers (GABE) and the mentoring of graduate students so that they can access the wide range of wisdom that comprises the faculty, students, staff, and alumni associated with the Graduate Group. “I am thrilled to be the new chair of the BE Graduate Group and welcome your input and comments on how to improve an already outstanding program,” says Dr. Cohen.