Yale Cohen Appointed Assistant Dean of Research Facilities and Resources at Penn Medicine

Yale E. Cohen, PhD

Yale E. Cohen, Professor of Otorhinolaryngology, with secondary appointments in Neuroscience and Bioengineering, was appointed Assistant Dean of Research Facilities and Resources at the Perelman School of Medicine at the University of Pennsylvania, effective April 1, 2022. Cohen is currently Chair of the Penn Bioengineering Graduate Group, and Director of the Hearing Sciences Center:

“Many of you are already quite familiar with Dr. Cohen, as his leadership roles in research training and education at PSOM and the University are far-reaching and impactful. Dr. Cohen is a Professor of Otorhinolaryngology with secondary appointments in the Department of Neuroscience and Engineering’s Department of Bioengineering. Recognized widely for his deep commitment to our teaching and training community, Dr. Cohen chairs the Bioengineering Graduate Group, and in 2020 received the prestigious Jane M. Glick Graduate Student Teaching Award, which honors clinicians and scientists who exemplify outstanding quality of patient care, mentoring, research, and teaching.”

Read the full announcement in the Penn Medicine archive.

Taimoor Qazi Appointed Assistant Professor at Purdue University

Taimoor H. Qazi, Ph.D.

The Department of Bioengineering is proud to congratulate Taimoor H. Qazi, Ph.D. on his appointment as Assistant Professor in the Weldon School of Biomedical Engineering at Purdue University. Qazi’s appointment will begin in Fall 2022.

Qazi obtained his Ph.D. at the Technical University of Berlin and the Charité Hospital in Berlin, Germany working on translational approaches for musculoskeletal tissue repair using biomaterials and stem cells under the co-advisement of Georg Duda, Director of the Berlin Institute of Health and David Mooney, Mercator Fellow at Charité – Universitätsmedizin Berlin. After arriving at Penn in 2019, Qazi performed research on microscale granular hydrogels in the Polymeric Biomaterials Laboratory of Jason Burdick, Adjunct Professor in Bioengineering at Penn and Bowman Endowed Professor in Chemical and Biological Engineering at the University of Colorado, Boulder. While conducting postdoctoral research, Qazi also collaborated with the groups of David Issadore, Associate Professor in Bioengineering and in Electrical and Systems Engineering, and Daeyeon Lee, Professor and Evan C. Thompson Term Chair for Excellence in Teaching in Chemical and Biomolecular Engineering and member of the Penn Bioengineering Graduate Group. Qazi’s postdoctoral research was supported through a fellowship from the German Research Foundation, and resulted in several publications in high-profile journals, including Advanced Materials, Cell Stem Cell, Small, and ACS Biomaterials Science and Engineering.

“Taimoor has done really fantastic research as a postdoctoral fellow in the group,” says Burdick. “Purdue has a long history of excellence in biomaterials research and will be a great place for him to build a strong research program.”

Qazi’s future research program will engineer biomaterials to make fundamental and translational advances in musculoskeletal tissue engineering, including the study of how rare tissue-resident cells respond to spatiotemporal signals and participate in tissue repair, and developing modular hydrogels that permit minimally invasive delivery for tissue regeneration. The ultimate goal is to create scalable, translational, and biologically inspired healthcare solutions that benefit a patient population that is expected to grow manifold in the coming years.

Qazi is looking to build a strong and inclusive team of scientists and engineers with diverse backgrounds interested in tackling problems at the interface of translational medicine, materials science, bioengineering, and cell biology, and will be recruiting graduate students immediately. Interested students can contact him directly at thqazi@seas.upenn.edu.

“I am excited to launch my independent research career at a prestigious institution like Purdue,” says Qazi. “Being at Penn and particularly in the Department of Bioengineering greatly helped me prepare for the journey ahead. I am grateful for Jason’s mentorship over the years and the access to resources provided by Jason, Dave Issadore, Ravi, Dave Meany and other faculty which support the training and professional development of postdoctoral fellows in Penn Bioengineering.”

Congratulations to Dr. Qazi from everyone at Penn Bioengineering!

Kevin Johnson Named AIMBE Fellow

Kevin B. Johnson, MD, MS

Kevin B. Johnson, David L. Cohen University Professor in Biostatistics, Epidemiology and Informatics and in Computer and Information Science, has been elected to the 2022 Class of the American Institute for Medical and Biological Engineering (AIMBE) Fellows. Johnson joined the Penn faculty in 2021. He also holds secondary appointments in Bioengineering, in Pediatrics, and in the Annenberg School for Communication, and is the Vice President for Applied Informatics for the University of Pennsylvania Health System.

Election to the AIMBE College of Fellows is among the highest professional distinctions accorded to a medical and biological engineer. College membership honors those who have made outstanding contributions to “engineering and medicine research, practice, or education” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of medical and biological engineering, or developing/implementing innovative approaches to bioengineering education.”

Johnson was nominated, reviewed, and elected by peers and members of the AIMBE College of Fellows for his pioneering discoveries in clinical informatics, leading to advances in data acquisition, medication management, and information aggregation in medical settings.

A formal induction ceremony was held during AIMBE’s 2022 Annual Event on March 25, 2022. Johnson was inducted along with 152 colleagues who make up the AIMBE Fellow Class of 2022. For more information about the AIMBE Annual Event, please visit www.aimbe.org.

Read Johnson’s AIMBE election press release here. Find the full list of 2022 Fellows here.

Researchers Develop Technology to Keep Track of Living Cells and Tissues

SAFE Bioorthogonal Cycling

Cells in complex organisms undergo frequent changes, and researchers have struggled to monitor these changes and create a comprehensive profile for living cells and tissues. Historically researchers have been limited to only 3-5 markers due to spectral overlaps in fluorescence microscopy, an essential tool required for imaging cells. With only this small handful of markers, it is difficult to monitor protein expressions of live cells and a comprehensive profile of cellular dynamics cannot be created. However, a new study in Nature Biotechnology addresses these limitations by demonstrating a new method for comprehensive profiling of living cells.

Jina Ko, PhD

Jina Ko, Assistant Professor in Bioengineering in the School of Engineering and Applied Science and in Pathology and Laboratory Medicine in the Perelman School of Medicine, conducted postdoctoral research at Massachusetts General Hospital (MGH) and the Wyss Institute at Harvard University, and the work for this study was done under the supervision of Jonathan Carlson M.D., Ph.D. and Ralph Weissleder M.D., Ph.D. of MGH. Ko’s lab at Penn develops novel technologies using bioengineering, molecular biology, and chemistry to address diagnostic challenges for precision medicine.

To address these limitations in microscopy, the team developed a new chemistry tool which was highly gentle to cells. This “scission-accelerated fluorophore exchange (or SAFE)” method utilizes “click” chemistry, a type of chemistry that follows examples found in nature to create fast and simple reactions. This new SAFE method functions with non-toxic conditions to living cells and tissues, whereas previous methods have used harsh chemicals that would strip off fluorophores and consequently would not work with living cells and tissues.

With the development of SAFE, the authors demonstrated that researchers can now effectively perform multiple cycles of cell profiling and can monitor cellular changes over the course of their observations. Instead of the previous limitation of 3-5 markers total, SAFE allows for many more cycles and can keep track of almost as many markers as the researcher wants. One can now stain cells and quench/release fluorophores and repeat the cycle multiple times for multiplexing on living cells. Each cycle can profile 3 markers, and so someone interested in profiling 15 markers could easily perform 5 cycles to achieve this much more comprehensive cell profile. With this breakthrough in more detailed imaging of cells, SAFE demonstrates broad applicability for allowing researchers to better investigate the physiologic dynamics in living systems.

Read the paper, “Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes,” in Nature Biotechnology.

This study was supported by the Schmidt Science Fellows in Partnership with the Rhodes Trust and National Institutes of Health, National Cancer Institute (K99CA256353).

How Bacteria Store Information to Kill Viruses (But Not Themselves)

by Luis Melecio-Zambrano

A group of bacteriophages, viruses that infect bacteria, imaged using transmission electron microscopy. New research sheds light on how bacteria fight off these invaders without triggering an autoimmune response. (Image: ZEISS Microscopy, CC BY-NC-ND 2.0)

During the last few years, CRISPR has grabbed headlines for helping treat patients with conditions as varied as blindness and sickle cell disease. However, long before humans co-opted CRISPR to fight genetic disorders, bacteria were using CRISPR as an immune system to fight off viruses.

In bacteria, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) works by stealing small pieces of DNA from infecting viruses and storing those chunks in the genes of the bacteria. These chunks of DNA, called spacers, are then copied to form little tags, which attach to proteins that float around until they find a matching piece of DNA. When they find a match, they recognize it as a virus and cut it up.

Now, a paper published in Current Biology by researchers from the University of Pennsylvania Department of Physics and Astronomy shows that the risk of autoimmunity plays a key role in shaping how CRISPR stores viral information, guiding how many spacers bacteria keep in their genes, and how long those spacers are.

Ideally, spacers should only match DNA belonging to the virus, but there is a small statistical chance that the spacer matches another chunk of DNA in the bacteria itself. That could spell death from an autoimmune response.

“The adaptive immune system in vertebrates can produce autoimmune disorders. They’re very serious and dangerous, but people hadn’t really considered that carefully for bacteria,” says Vijay Balasubramanian, principal investigator for the paper and the Cathy and Marc Lasry Professor of Physics in the School of Arts & Sciences.

Balancing this risk can put the bacteria in something of an evolutionary bind. Having more spacers means they can store more information and fend off more types of viruses, but it also increases the likelihood that one of the spacers might match the DNA in the bacteria and trigger an autoimmune response.

Read the full story in Penn Today.

Vijay Balasubramanian is the Cathy and Marc Lasry Professor of Physics at the Department of Physics and Astronomy of the University of Pennsylvania, a visiting professor at Vrije Universiteit Brussel, and a member of the Penn Bioengineering Graduate Group.

FDA Approves Penn Pioneered CAR T Cell Therapy for Third Indication

The U.S. Food and Drug Administration has expanded its approval for Kymriah, a personalized cellular therapy developed at the Abramson Cancer Center, this time for the treatment of adults with relapsed/refractory follicular lymphoma who have received at least two lines of systemic therapy. “Patients with follicular lymphoma who relapse or don’t respond to treatment have a poor prognosis and may face a series of treatment options without a meaningful, lasting response,” said Stephen J. Schuster, the Robert and Margarita Louis-Dreyfus Professor in Chronic Lymphocytic Leukemia and Lymphoma in the Division of Hematology Oncology. It’s the third FDA approval for the “living drug,” which was the first of its kind to be approved, in 2017, and remains the only CAR T cell therapy approved for both adult and pediatric patients.

“In just over a decade, we have moved from treating the very first patients with CAR T cell therapy and seeing them live healthy lives beyond cancer to having three FDA-approved uses of these living drugs which have helped thousands of patients across the globe,” said Carl June, MD, the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine in Penn’s Perelman School of Medicine and director of the Center for Cellular Immunotherapies in the Abramson Cancer Center and director of the Parker Institute for Cancer Immunotherapy at Penn. “Today’s news is new fuel for our work to define the future of cell therapy and set new standards in harnessing the immune system to treat cancer.”

Research from June, a member of the Penn Bioengineering Graduate Group, led to the initial FDA approval for the CAR T therapy (sold by Novartis as Kymriah) for treating acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

Read the full announcement in Penn Medicine News.

Center for Engineering Mechanobiology 2.0: Developing ‘Mechanointelligence’

by Evan Lerner

The dynamics governing mechanointelligence vary greatly along time- and length-scales, so detailed models of individual cells and their components are necessary to connect the effects of their physical environments to the downstream effects those forces have on biological processes.

The National Science Foundation’s Science and Technology Center (STC) program is its flagship funding mechanism for organizing interdisciplinary research on cutting-edge topics. Penn’s Center for Engineering MechanoBiology (CEMB) is one of the 18 active STCs, bringing together dozens of researchers from Penn Engineering and the Perelman School of Medicine, as well as others spread across campus and at partner institutions around the world.

With its NSF funding now renewed for another five years, the Center is entering into a new phase of its mission, centered on the nascent concept of “mechanointelligence.”

Mechanobiology is the study of the physical forces that govern the behavior of cells and their communication with their neighbors. Mechanointelligence adds another layer of complexity, attempting to understand the forces that allow cells to sense, remember and adapt to their environments.

Ultimately, harnessing these forces would allow researchers to help multicellular organisms — plants, animals and humans — better adapt to their environments as well.

“Mechanointelligence is a key element of a cell’s ability to survive and reproduce,” says CEMB Director and Eduardo D. Glandt President’s Distinguished Professor Vivek Shenoy. “Just like with complex organisms, a cell’s ‘fitness’ depends on its environment, and adapting means rewiring how its genes are expressed.”

Read the full story in Penn Engineering Today.

Vivek Shenoy is Eduardo D. Glandt President’s Distinguished Professor in Materials Science and Engineering, Bioengineering and Mechanical Engineering and Applied Mechanics.

César de la Fuente Receives 2022 RSEQ Young Investigator Award

César de la Fuente, PhD

César de la Fuente, Presidential Assistant Professor in Psychiatry, Bioengineering, Microbiology, and in Chemical and Biomolecular Engineering has been honored with a 2022 Young Investigator Award by the Royal Spanish Society of Chemistry (RSEQ) for his pioneering research efforts to combine the power of machines and biology to help prevent, detect, and treat infectious diseases.

Read the RSEQ’s announcement here.

This story originally appeared in Penn Medicine News’s Awards & Accolades post for April 2022.

 

2022 Graduate Research Fellowships for Bioengineering Students

Congratulations to the two Bioengineering students to receive 2022 National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. The eighteen Penn 2022 honorees were selected from a highly-competitive pool of over 12,000 applications nationwide. Further information about the program can be found on the NSF website.

 Gianna Therese Busch, PhD student, Bioengineering
Gianna is a member of the systems biology lab of Arjun Raj, Professor in Bioengineering and Genetics. Her research focuses on single-cell differences in cancer metabolism and drug resistance.

 

 

 

Shawn Kang, BSE/MSE, Bioengineering (’22)
Shawn conducted research in the BIOLines Lab of Dan Huh, Associate Professor in Bioengineering, where he worked to develop more physiologically relevant models of human health and disease by combining organs-on-a-chip and organoid technology.

 

 

 

The following Bioengineering students also received Honorable Mentions:
Michael Steven DiStefano, PhD student
Rohan Dipak Patel, PhD student
Abraham Joseph Waldman, PhD student

Read the full list of NSF GRFP Honorees on the Grad Center at Penn website.

Streamlining the Health Care Supply Chain

William Danon and Luka Yancopoulos, winners of the 2022 President’s Innovation Prize, will offer a software solution to make the health care supply chain more efficient.

by Brandon Baker

William Danon and Luka Yancopoulos pose in front of College Hall in April 2022. They are co-founders of Grapevine and the winners of the 2022 President’s Innovation Prize.

William Danon and Luka Yancopoulos are best friends. They’re also business partners.

The duo, who received this year’s President’s Innovation Prize (PIP) for Grapevine, met during sophomore year, connected through Yancopoulos’ roommate. As time went on, they did everything together: cooked meals, played basketball, and read and discussed fantasy novels.

“We spent a lot of time together,” Danon says.

It was only natural, then, that when the time came to start an actual venture, they’d do it together.

“They’re like brothers, in a very good way,” says mentor David Meaney of the School of Engineering and Applied Science, who describes their working dynamic as “complementary.” “I think that will serve them well. Most of what we do in faculty is collaborative, and I see elements of that in their partnership. I give them credit for stepping out and doing something unusual and keeping at it.”

How Grapevine came to be

Grapevine is a software solution and professional networking platform that connects small-to-medium-size players in the health care supply chain. It’s a sort of two-pronged solution: It helps institutions like hospital systems connect disjointed operations like procurement and inventory management internally, but also serves as a glue between these institutions and purveyors of medical equipment.

“William and Luka are impact-driven entrepreneurs whose collaborative synergies will take them far,” says Penn Interim President Wendell Pritchett. “The software provided by Grapevine is poised to reinvent how the health care industry buys and sells medical supplies and services and, truly, could not come at a timelier moment.”

The company is the evolution of a project they began at the onset of the COVID-19 pandemic, called Pandemic Relief Supply, which delivered $20 million of health care supplies to frontline workers.

“My mom was a nurse practitioner at New York Presbyterian Hospital, the largest hospital in the United States, and she was coming home with horror stories,” recalls Yancopoulos. “In surgery or the ER, a surgeon had to put on a garbage bag because they didn’t have a gown. And they gave her one mask to use for the rest of the month, and I’m seeing on the news, ‘Don’t wear a mask for more than three days.’”

This is where Yancopoulos and Danon first developed an interest in the health care supply chain. Using a database Penn allows students access to that maps the import of any good in the country, they did keyword matching to identify instreams of different goods and handed off findings to New York Presbyterian procurement staff. When McKesson, the largest provider of health care products and services in the U.S., took notice of what they were doing and reached out, they realized they were onto something. In response to their success, they started a company called Pandemic Relief Supply to distribute reliable medical supplies, including items like medical-grade masks and gloves, to frontline workers in the healthcare space.

As time passed, that project evolved into something larger: Grapevine.

A mock-up screenshot of a business profile on the Grapevine professional networking platform. (Image: William Danon)

In short, Grapevine’s software creates a professional networking platform to resolve miscommunications between suppliers and buyers, as well as adds a layer of transparency between interactants. Suppliers on the platform display real-time data about their inventory and shipping process, with timestamps; this prohibits companies from cherry-picking data or making false claims and creates a more health-care-supply-specific space for companies to interact than, say, LinkedIn.

“Primarily, the first step is we want people to use it internally, and streamline operations, and then through that centralized operational data, you can push that externally and that’s where [Grapevine] becomes a connector,” explains Danon. “Because when you’re choosing to connect with someone, the reason you can do so way more efficiently or quickly, is that data is actual operational data.”

To accomplish this level of transparency, the beginnings of Grapevine involved lots of legwork. Last year, the duo moved to Los Angeles to take stock of what suppliers existed where, and how reliable they were. They realized that many suppliers existed around Los Angeles because of port access; many medical supplies are imported from Asia. Their time in LA made the problem feel even more tangible, they agree.

“We were able to see people were doing outdated processes—manual processes—because there’s no other option,” Danon says. “So, we said, ‘Let’s get out there and do some work to be digital and technologically innovative.”

Read the full story in Penn Today.

N.B.: Yancopolous’s senior design team created “Harvest” for their capstone project in Bioengineering, building on the existing Grapevine software package. Read Harvest’s abstract and view their final presentation on the BE Labs website.