Organs-on-a-Chip Hurtle Toward the Final Frontier

Graduate student Andrei Georgescu and Assistant Professor Dan Huh in Huh’s lab. Adapting the organ-on-a-chip technology for a trip to the International Space Station presented Huh’s team with a number of engineering challenges. (Photo: Kevin Monko)

Throughout the 60-year history of the U.S. space program—from the Mercury capsules of the 1960s to today’s International Space Station—astronauts have been getting sick. Researchers know being in orbit seems to suppress their immune systems, creating a more fertile ground for infections to grow. But nobody really understands why.

Early on the morning of April 26, a SpaceX Falcon 9 rocket will launch a cargo mission to the ISS from Cape Canaveral Air Force Station. Along with fresh water, food, and other necessities for the crew, the craft will be carrying two experiments designed by Penn scientists that could help shed light on why bugs have bedeviled space travelers.

For more than a decade, Dan Huh, the Wilf Family Term Assistant Professor of Bioengineering in the School of Engineering and Applied Science, has been developing super-small devices that use living cells to stand in for larger organs. These organs-on-a-chip hold great promise for all kinds of research, from diagnosing disease to curing them. They’re also a way to test things, including drugs and cosmetics, in a way that mimics real life without relying on animal subjects.

Read the full story at Penn TodayMedia contact Gwyneth K. Shaw

Week in BioE (March 7, 2018)

Online Tool for 3D Visualization of Gene Mutations

recon3d
DNA inside cell nuclei undergoing the process of mitosis.

Fifteen years ago marked a major milestone in the Human Genome Project: scientists successfully sequenced all of the base pairs in our 23 sets of chromosomes. Following this accomplishment, researchers assembled generations of mathematical models to understand how gene mutations result in disease. A key barrier in developing these models is the size of genome itself: a single human genome requires approximately 2 GB of storage, and many studies examine thousands of genomes to detect changes in a small number of patients. Both processing these large datasets and efficiently storing them create challenges. Making these model predictions accurate and complete is another challenge.

Scientists collaborating among several universities on three continents developed an online computational tool to help overcome these barriers. The scientists, who include Bernhard Palsson, Ph.D., Galletti Professor of Bioengineering at University of California, San Diego, as one of the lead authors, report on the resource in a recent issue of Nature Biotechnology.

Called Recon3D, the new resource provides a metabolic network model using approximately 17% of known human genes. The model combines data on the genes, metabolites, proteins, and metabolic reactions for human metabolism. In addition, as the model’s name implies, Recon3D accounts for the physical structure of model components, imporving significantly on past models that relied on linear, two-dimensional models. Although the model still has 83% of genes left to incorporate, it could ultimately unravel some of the mysteries underlying virtually any disease with a genetic cause, from inborn errors of metabolism to cancer.

Bioengineering for Refugees

As the war in Syria enters its seventh year, at least five million refugees have left the country to seek asylum elsewhere. Roughly 20% of the refugees are now in Lebanon, where many reside in refugee camps.  Although these refugees are now much safer than before, even in the best of circumstances, the conditions in refugee camps can compromise health and wellness.

Engineering can offer relief for some of these conditions. A three-week course offered in January at the American University of Beirut, co-designed and taught by Muhammad Zaman, Ph.D., Professor of Biomedical Engineering at Boston University, and entitled “Humanitarian Engineering: Designing Solutions for Health Challenges in Crises,” had students devising solutions to the issues facing these refugees.

Among the ideas generated by the students was “3D Safe Water” – a device designed to detect the contamination of water, decontaminate it, and deploy the technology in low resource settings. The device uses sensors to detect contamination and chlorine to decontaminate. With water-borne diseases taking an especially hard toll on camps like these, the device could significantly improve living conditions for refugees.

Placenta on a Chip

Organ-on-chip technologies use microfluidics to model organs or organ systems. So far, engineers have developed chip-based models of the lungs, heart, and kidneys, as well as the circulatory system.

The most recent addition to the organ-on-chip family is the placenta-on-a-chip, developed by Dan Huh, Ph.D., Wilf Family Term Assistant Professor of Bioengineering at the University of Pennsylvania. Modeling the organ that mediates and communicates between a pregnant woman and the fetus, Dr. Huh created a chip to study how drugs move from the bloodstream of the mother to the fetus. With this knowledge, one could determine more safely and more accurately how drugs taken by the mother can affect a pregnancy.

People and Places

Two colleges have announced new biomedical engineering programs.  George Fox University, a Christian college in Oregon, will offer a BME concentration for engineering majors starting this fall. On the other side of the country, Springfield Technical Community College in western Massachusetts will offer a two-year associate’s degree in BME technology.

The University of Arizona, in cooperation with the City of Phoenix, will launch a new medical technology accelerator program, to be called InnoVention. It will be located on UofA’s Phoenix Biomedical Campus. Frederic Zenhausern, PhD, MBA, Professor of Basic Medical Sciences and Director of the Center for Applied NanoBioscience and Medicine at Arizona, is among the people leading the effort.

Finally, Distinguished Professor Craig Simmons of the University of Toronto’s Institute of Biomaterials and Biomedical Engineering is among 10 awardees sharing a $3.5 million grant (approximately $2.7 million in U.S. currency) for the development of medical devices and technologies. Dr. Simmons, a former postdoc at Penn, will use his funding to investigate the use of stem cells to repair congenital heart defects in infants.

Organ-on-a-Chip Earns Big CRI Grant for Huh Lab

CRI grant Huh
Dan Huh, Ph.D.

As we reported earlier, Dan Huh, Wilf Family Term Chair & Assistant Professor in the Department of Bioengineering, has been awarded a $1 million grant from the Cancer Research Institute (CRI), along with its first CRI Technology Impact Award.

Recently, the Penn Engineering Blog featured a story on Dr. Huh’s grant and the research it will support for the next three years. You can read the story at the SEAS blog.

Congratulations again to Dr. Huh!

Dan Huh Receives $1M CRI Grant to Study Cancer

CRI huh
Dan Huh, Ph.D.

Dan Huh, Wilf Family Term Assistant Professor in the Penn Department of Bioengineering, has received the Cancer Research Institute (CRI) Technology Impact Award. Dr. Huh, whose research attempts to model cancer-immune cell interactions in microphysiological systems, will receive $1 million over the next three years for direct costs of his research.

“This award will provide us with an exciting opportunity to explore the potential of our organ-on-a-chip technology for the study of cancer immunotherapy, which is one of the most promising yet poorly understood clinical strategies for cancer treatment,” Dr. Huh said. “I am honored to receive this major award and excited with the prospect of contributing to this rapidly emerging area of medicine using innovative bioengineering technologies.”

Join us in congratulating Dr. Huh!

Allen Foundation Awards Major Grant to Study Concussions

Faculty members in the Department of Bioengineering at the University of Pennsylvania are among the recipients of a major $9.25 million grant from the Paul G. Allen Family Foundation to study the mechanism underlying concussion and to investigate possible interventions.

allen foundation meaneyallen foundation smith

 

 

 

 

 

 

David Meaney, PhD, Solomon R. Pollack Professor and Chair of the Bioengineering Department (above left), is one of two principal investigators, with Douglas H. Smith, MD,  professor of neurosurgery at Penn’s Perelman School of Medicine (above right). In addition, Danielle S. Bassett, PhD, Eduardo D. Glandt Faculty Fellow and Associate Professor (below left), Dongeun (Dan) Huh, PhD, Wilf Family Term Assistant Professor (below center), and David Issadore, PhD, assistant professor (below right), all of BE Department, are co-investigators. The Allen Foundation grant also involves investigators from Columbia University (Barclay Morrison, Ph.D.), Duke University (Cameron Bass, Ph.D.), and Children’s Hospital of Philadelphia (Akiva Cohen, Ph.D.).

allen foundation bassettallen foundation huhallen foundation issadore

Selected from a large national pool of applicants, the Allen Foundation grant will bring together new technology platforms developed by Drs. Huh and Issadore to study how concussions occur at the microtissue scale and release markers of rewiring  during recovery. Network theory models from Dr. Bassett’s group will provide an entirely new view on how concussion recovery occurs at all scales in the brain. The overall impact of the project will be to move away from the widely held perspective that all concussions should be treated identically and towards a view that concussions can follow several recovery pathways, some of which must be monitored closely in the days to weeks following injury.

Dan Huh Receives Ryan Medal

Ryan Medical recipient Dan Huh
Professor Dan Huh

A professor in the Penn Department of Bioengineering, Dongeun (Dan) Huh, PhD, has been awarded the John J. Ryan Medal, which is given annually by the Royal College of Surgeons in Ireland (RCSI).

Every year this honor recognizes a scientist who has made major contributions to developing innovative biomedical technologies with the potential to have a broad impact on the life sciences. Dr. Huh, who is Wilf Family Term Endowed Chair in the BE Department, received the medal at an RCSI Research Retreat on March 9 on the RCSI campus in Dublin, and he delivered the John J. Ryan Distinguished Lecture.

“As an engineer, I am honored to have been selected by a group of biologists and clinicians for this prestigious award that recognizes significant contributions to biomedical research,” Professor Huh said. “It is truly rewarding and encouraging to experience strong support and enthusiasm for our pursuit of innovative biomedical technologies.”