How a Diversity Program Enabled a Childhood Orthopaedics Patient’s Research Dreams

by Julie Wood

As a child, Sonal Mahindroo would go to her orthopaedics appointments with her family, slowly becoming more and more fascinated by the workings and conditions of the musculoskeletal system. While being treated for scoliosis, she would receive children’s books from her doctor that helped provide clear and simplified explanations of orthopaedic topics, which supported her interest.

Nearly a decade later, Mahindroo is still interested in expanding her orthopaedic knowledge, and a Penn Medicine program is helping fuel that expansion. Now a senior at St. Bonaventure University in New York, Mahindroo spends her time at the university’s lab. But in addition to that, this year, she was able to take part in more learning opportunities with Penn Medicine’s support, via the McKay Orthopaedic Research Lab’s Diversity, Equity, and Inclusion (DEI) committee’s conference grant program.

McKay’s DEI committee — consisting of faculty, post-docs, graduate students, and staff — offers a welcoming environment and resources that support people of all identities, empowering them to bring forward unique perspectives to orthopaedic research.

“Our goal is to improve diversity and culture both within McKay and in the orthopaedic research community outside of Penn,” said Sarah Gullbrand, PhD, a research assistant professor at the McKay Lab. “We wanted to provide an opportunity for students to attend a conference and make connections to help them pursue their interest in orthopaedic research.”

The McKay conference grant supports undergraduate students who have been unable to get hands-on research experience. Participants are provided with the opportunity to network with leaders in the field of orthopaedic research, listen to cutting-edge research presentations, and learn about ways to get involved in orthopaedic research themselves.

“When launching the conference grant program earlier this year, I was motivated by my own experience attending a conference as an undergraduate. That experience really increased my interest in attending graduate school and taught me a lot about the breadth of research in orthopaedics,” said Hannah Zlotnick, a PhD student at the McKay Lab and member of the DEI committee. Through the McKay Conference Grants, the committee has supported two cohorts of students. “So far, we’ve been able to fund 11 undergraduate students from around the country to virtually attend orthopaedics conferences and receive early exposure to careers in STEM.”

Along with the conference grant, the McKay Lab holds workshops, book clubs, and other programs focused on DEI-related topics. As part of their efforts for promoting gender diversity in the field, the McKay Lab has previously partnered with the Perry Initiative to offer direct orthopaedic experiences for girls in high school, where they can learn how to suture, and perform mock fracture fixation surgeries on sawbones.

As a primarily male-populated field, orthopaedics could benefit greatly from diversity efforts. While women comprise approximately 50 percent of medical school graduates in the United States, they represent only 14 percent of orthopaedic surgery residents.

“The only women on staff at my orthopaedist’s office were receptionists. There were no female physicians or engineers to make my scoliosis brace,” Mahindroo said. “It was really cool coming to the McKay Lab and seeing how much the field has progressed since then.”

Read more at Penn Medicine News.

N.B. Hannah Zlotnick is a PhD student in Bioengineering studying in the lab of Robert Mauck, Mary Black Ralston Professor in Bioengineering and Orthopaedic Surgery.

‘The Self-Organized Movement to Create an Inclusive Computational Neuroscience School’

When the COVID-19 pandemic began taking hold in the United States, one of the first “superspreader” events was an academic conference. Such conferences have long been a primary way for researchers to share new findings and launch collaborations, but with thousands of people from around the world, indoors and in close proximity, it quickly became clear that the traditional format for these events would need to radically change.

Konrad Kording
Konrad Kording

Konrad Kording, a Penn Integrates Knowledge Professor with appointments in the departments of Bioengineering and Computer and Information Science in Penn Engineering and the Department of Neuroscience at Penn’s Perelman School of Medicine, was ahead of the curve on this shift. With the issues of prohibitive costs and environmental impact of travel in mind, Kording had already started brainstorming ways of reinventing the traditional conference format when the pandemic made it a necessity.

The resulting event, Neuromatch, involved algorithmically analyzing participants’ work in order to connect researchers who might not otherwise meet. Building on the success of that “unconference,” Kording and his colleagues launched the Neuromatch Academy, a free-ranging online summer school organized around the same principles.

Ashley Juavinett writing for The Simons Collaboration on the Global Brain, recently dug into how Neuromatch was able to pull together 1,750 students from 70 countries in a matter of months:

Kording already had experience quickly pulling together online events. Early in the pandemic, together with Dan Goodman, Titipat Achakulvisut and Brad Wyble, he developed an online ‘unconference,’ which featured both lectures and a virtual networking component designed to mimic the in-person interactions that make conferences so valuable. (For more, see “Designing a Virtual Neuroscience Conference.”) Soon after, they decided to spin that success into a full-fledged summer school offering live lectures with top computational neuroscientists, guided coding exercises to teach mathematical approaches to neural modeling and analysis, and community support from mentors and teaching assistants (TAs).

The result was a summer school with well-designed content, a diverse student body, including participants from U.S.-sanctioned Iran, and a determined group of organizers who managed to pull off the most inclusive computational neuroscience school yet. NMA now has its eye on a future with even broader representation across countries, languages and skill levels. This year has been incredibly difficult for many, but NMA has provided an important precedent for how to collaborate across, and even dismantle, all sorts of barriers.

Continue reading “The Self-Organized Movement to Create an Inclusive Computational Neuroscience School” at The Simons Collaboration on the Global Brain.

Originally posted on the SEAS blog. Media contact Evan Lerner.