2024 Graduate Research Fellowships for Penn Bioengineering Students

NSF Logo

Congratulations to the fifteen Bioengineering students to receive 2024 National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. The recipients were selected from a highly-competitive, nationwide pool. Further information about the program can be found on the NSF website.

The following Ph.D. students in Bioengineering received awards:

Anushka Agrawal – Mitchell Lab

Amanda Bluem  – incoming student

Stephen Ching – incoming student, Research Staff in the Hast Lab

Ana Crysler – incoming student, de la Fuente Lab

Ellie Feng – incoming student

Stephen Lee – Alvarez lab

Jenlu Pagnotta – incoming student

Schyler Rowland – incoming student

Rayna L. Schoenberger – incoming student, Gottardi Lab

Eva Utke – incoming student

Delaney Wilde – Bugaj Lab

The following BE undergraduate students also received awards and will be pursuing graduate study:

Aditi Ghalsasi – Recent M&T program graduate (Bioengineering and Finance), Mitchell Lab

Ryan Lim – Recent B.S.E. graduate, incoming Ph.D. student at Harvard-MIT

Angela Song – Recent B.S.E. graduate, Wallace Lab

Dorix Xu – Recent B.S.E. graduate, Center for Neuroengineering and Therapeutics

The following students received honorable mention:

Ekta Singh – Recent Master’s in BE graduate, incoming Ph.D. student, Witschey Lab

Ksenija Tasich – incoming Ph.D. student

Emma Warrner – incoming Ph.D. student

2023 Graduate Research Fellowships for Bioengineering Students

Congratulations to the fourteen Bioengineering students to receive 2023  National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. The recipients honorees were selected from a highly-competitive, nationwide pool. Further information about the program can be found on the NSF website.

Carlos Armando Aguila, Ph.D. student in Bioengineering, is a member of the Center of Neuroengineering and Therapeutics, advised by Erin Conrad, Assistant Professor in Neurology, and Brian Litt, Professor in Bioengineering and Neurology. His research focuses on analyzing electroencephalogram (EEG) signals to better understand epilepsy.

Joseph Lance Victoria Casila is a Ph.D. student in Bioengineering in the lab of Riccardo Gottardi, Assistant Professor in Pediatrics and Bioengineering. His research focuses on probing environmental factors that influence stem cell differentiation towards chondrogenesis for cartilage engineering and regeneration.

Trevor Chan is a Ph.D. student in Bioengineering in the lab of Felix Wehrli, Professor of Radiologic Science. His research is in developing computational methods for medical image refinement and analysis. Two ongoing projects are: self-supervised methods for CT super-resolution and assessment of osteoporosis, and semi-supervised segmentation of 3D and 4D echocardiograms for surgical correction of congenital heart-valve defects.

Rakan El-Mayta is an incoming Ph.D. student in the lab of Drew Weissman, Roberts Family Professor in Vaccine Research. Rakan studies messenger RNA-lipid nanoparticle vaccines for the treatment and prevention of infectious diseases. Prior to starting in the Bioengineering graduate program, he worked as a Research Assistant in Weissman lab and in the lab of Michael Mitchell, Associate Professor in Bioengineering.

Austin Jenk is a Ph.D. student in the lab of Robert Mauck, Mary Black Ralston Professor in Orthopaedic Surgery and Bioengineering. Austin aims to develop early intervention, intra-articular therapeutics to combat the onset of post-traumatic osteoarthritis following acute joint injuries. His work focuses on developing a therapeutic that can be employed not only in conventional healthcare settings, but also emergency and battlefield medicine.

Jiageng Liu is a Ph.D. student in the lab of Alex Hughes, Assistant Professor in Bioengineering. His work aims to precisely control the bio-physical/chemical properties of iPSC-derived organoids with advanced synthetic biology approaches to create functional replacement renal tissues.

Alexandra Neeser is a Ph.D. student in the lab of Leyuan Ma, Assistant Professor of Pathology and Laboratory Medicine. Her research focuses on solid tumor microenvironment delivery of therapeutics.

 

William Karl Selboe Ojemann, a Ph.D. Student in Bioengineering, is a member of the Center for Neuroengineering and Therapeutics directed by Brian Litt, Professor in Bioengineering and Neurology. His research is focused on developing improved neurostimulation therapies for epilepsy and other neurological disorders.

Savan Patel (BSE Class of 2023) conducted research in the lab of Michael Mitchell, Associate Professor in Bioengineering, where he worked to develop lipid nanoparticle formulations for immunotherapy and extrahepatic delivery of mRNA. He will be joining the Harvard-MIT HST MEMP Ph.D. program in the fall of 2023.

David E. Reynolds, a Ph.D. student in Bioengineering, is a member of the lab of Jina Ko, Assistant Professor in Bioengineering and Pathology and Laboratory Medicine. His research focuses on developing novel and translatable technologies to address currently intractable diagnostic challenges for precision medicine.

Andre Roots is a Ph.D. student in the lab of Christopher Madl, Assistant Professor in Materials Science and Engineering. His research focuses on the use of protein engineering techniques and an optimized 3D human skeletal muscle microtissue platform to study the effects of biophysical material properties on cells.

Emily Sharp, a second year Ph.D. student in Bioengineering, is a member of the lab of Robert Mauck, Mary Black Ralston Professor in Orthopaedic Surgery and Bioengineering, part of the McKay Orthopaedic Research Laboratories. Her research focuses on designing multi-functional biomaterials to enhance tissue repair, specifically intervertebral disc repair following herniation and discectomy.

Nat Thurlow is a Ph.D. student in the lab of Louis J. Soslowsky, Fairhill Professor in Orthopedic Surgery and Bioengineering. Their current work focuses on delineating the roles of collagens V and XI in tendon mechanics, fibril structure, and gene expression during tendon development and healing.

Maggie Wagner, Ph.D. student in Bioengineering, is a member in the labs of Josh Baxter, Assistant Professor of Orthopaedic Surgery, and Flavia Vitale, Assistant Professor in Neurology and Bioengineering. Her research focuses on the development of novel sensors to record and monitor muscle neuromechanics.

Penn Medicine and Independence Blue Cross Eliminate Preapprovals for Imaging Tests

Brian Litt, MD

Brian Litt, Professor in Bioengineering in Penn Engineering and in Neurology in the Perelman School of Medicine, spoke to Neurology Today about the advances in technology for detecting and forecasting seizures.

The Litt Lab for Translational Neuroengineering translates neuroengineering research directly into patient care, focusing on epilepsy and a variety of research initiatives and clinical applications.

“Dr. Litt’s group is working with one of a number of startups developing ‘dry’ electrode headsets for home EEG monitoring. ‘They are still experimental, but they’re getting better, and I’m really optimistic about the possibilities there.'”

Read “How Detecting, Identifying and Forecasting Seizures Has Evolved” in Neurology Today.

Read more stories featuring Litt in the BE Blog.

Novel Tools for the Treatment and Diagnosis of Epilepsy

by Nathi Magubane

A neurologist examines an encephalogram of a patient’s brain.
Throughout his career, Brian Litt has fabricated tools that support international collaboration, produced findings that have led to significant breakthroughs, and mentored the next generation of researchers tackling neurological disorders. (Image: iStock Photo/Alona Siniehina)

When Brian Litt of the Perelman School of Medicine and School of Engineering and Applied Science began treating patients as a neurologist, he found that the therapies and treatments for epilepsy were mostly reliant on traditional pharmacological interventions, which had limited success in changing the course of the disease.

People with epilepsy are often prescribed anti-seizure medications, and, while they are effective for many, about 30% of patients still continue to experience seizures. Litt sought new ways to offer patients better treatment options by investigating a class of devices that electronically stimulate cells in the brain to modulate activity known as neurostimulation devices.

Litt’s research on implantable neurostimulation devices has led to significant breakthroughs in the technology and has broadened scientists’ understanding of the brain. This work started not long after he came to Penn in 2002 with licensing algorithms to help drive a groundbreaking device by NeuroPace, the first closed-loop, responsive neurostimulator to treat epilepsy.

Building on this work, Litt noted in 2011 how the implantable neurostimulation devices being used at the time had rigid wires that didn’t conform to the brain’s surface, and he received support from CURE Epilepsy to accelerate the development of newer, flexible wires to monitor and stimulate the brain.

“CURE is one of the epilepsy community’s most influential funding organizations,” Litt says. “Their support for my lab has been incredibly helpful in enabling the cutting-edge research that we hope will change epilepsy care for our patients.”

Read the full story in Penn Today.

Brian Litt is a Professor in Bioengineering and Neurology.

Flavia Vitale is an Assistant Professor in Neurology with a secondary appointment in Bioengineering.

Jonathan Viventi is an Assistant Professor in Biomedical Engineering at Duke University.

Book Discussions and Bonding at the Bioengineering Retreat

by Brittany H. Scheid

Retreat participants in Mitchell Hall at the College of Physicians

This year, the lineup of new student orientation activities included a new event:  the first bioengineering retreat for incoming Ph.D. graduate students.  Sitting in the historic Mitchell Hall at the College of Physicians, the 2022 Ph.D. cohort participated in a fun and educational half-day program that included a series of bonding activities, small-group conversations, and panel discussions. Current members of the Graduate Association of Bioengineers (GABE) planned the program to strengthen personal connections among students and to lend some advice to the newcomers as they embarked on their scholastic journey.

Prior to the retreat, participants read The Immortal Life of Henrietta Lacks by Rebecca Skloot, a work that delves into the human story of Henrietta Lacks, a Black woman from Virginia whose cancer cells were obtained for scientific study in the early 1950s without her knowledge. Today, “HeLa” cells have become one of the most significant tools in cell biology, enabling the development of polio vaccines, research into radiation effects, and even research on COVID-19. Together at the retreat, we discussed the intersection of ethics and scientific discovery, and reflected on our responsibility as scientists to consider the impact of our work beyond the immediate scientific question.

“Surviving the PhD 101” Panel Discussion. From left to right: Aoifa O’Farrell, Mosha Deng, David Mai, Lasya Sreepada

Current Ph.D. students volunteered their afternoons to share in two additional activities. Aoife O’Farrell, David Mai, Lasya Sreepada, and Mosha Deng imparted sage advice about using on-campus resources, handling advisor-advisee conflicts, and finding the best bites in Philly in the “Surviving the Ph.D. 101” panel discussion. Seven other students presented a series of flash talks about their research areas and musings on the best hypothetical mascot to represent their lab. The afternoon finished with an after-hours visit to the Mütter Museum, which holds an extensive and unique collection of anatomical specimens and antique medical equipment previously used for medical education.

If the WhatsApp group formed by the new cohort during the event is any indication, the retreat was an overall success! GABE looks forward to continuing the event in the future.

Brittany H. Scheid is a Ph.D. candidate studying Bioengineering in the lab of Brian Litt, Professor in Bioengineering and Neurology, and she is Co-President of GABE at Penn.

 

Brian Litt Receives Landis Award for Outstanding Mentorship

Brian Litt, MD

Brian Litt, MD, Professor in Neurology, Neurosurgery and Bioengineering and Director of the Penn Epilepsy Center, has received a 2022 Landis Award for Outstanding Mentorship from the National Institute of Neurological Disorders and Stroke (NINDS). This award honors Litt’s dedication to superior mentorship and training in neuroscience research. The award includes $100,000 in the form of a supplement to an existing NINDS grant to support his efforts to foster the career advancement of additional trainees.

Read the announcement in Penn Medicine News.

Developing New Technologies to Solve the Mysteries of the Brain

Flavia Vitale, assistant professor of neurology, bioengineering, and physical medicine and rehabilitation, and founder of the multidisciplinary Vitale Lab. (Image: Penn Medicine News)

Neurology, bioengineering, and physical medicine and rehabilitation might not seem like three disciplines that fit together, but for Flavia Vitale, an assistant professor of all three, it makes perfect sense. As the director and principal investigator at the Vitale Lab, her research focuses on developing new technologies that help to study how the brain and neuromuscular systems function.

Years ago, while she was working at Rice University developing new materials and devices that work in the body in a safer, more effective way, former president Barack Obama launched the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative, aimed at revolutionizing the understanding of the human brain. This emphasis on how little is known about brain structure and function inspired Vitale to refocus her research on developing technology and materials that will help researchers solve the mysteries of the brain.

In 2018, she joined the faculty at the Perelman School of Medicine as an assistant professor of neurology, bioengineering, and physical medicine and rehabilitation, and founded the multidisciplinary Vitale Lab, where her team develops cutting edge materials and devices that will someday help clinicians diagnose and treat patients with complicated brain and neurological conditions. She is also one of the engineers looking forward to using new combined clinical/research facilities in neuroscience at Penn Medicine’s new Pavilion where new neurotechnoloigies will be developed and tested.

“My main goal is to create tools that can help solve mysteries of the brain, and address the needs of clinicians,” she says.

“My lab was recently awarded two grants totaling $4.5 million from the National Institute of Neurological Disorders and Stroke. In order to obtain more precise insights, noninvasively, into brain activity to improve gene therapy treatments for a range of diagnoses, from Parkinson’s disease to glioblastoma. The first grant is designated for the development of a novel surgical device for delivering gene-based therapeutics to the brain. The second is for optimization and pre-clinical validation of a novel EEG electrode technology, which uses a soft, flexible, conductive nanomaterial rather than metal and gels. We hope to confirm that these technologies work as well as, if not better than existing ones.”

Read the full story in Penn Medicine News.

An Ecosystem of Innovation Fosters Tech-based Solutions to COVID-19 Challenges

by Erica K. Brockmeier

GRASP lab researchers (from left) Bernd Pfrommer, Kenneth Chaney, and Caio Mucchiani assembling telemedicine cart prototypes in Levine hall earlier this spring. (Image courtesy of Kenneth Chaney and Bernd Pfrommer)

Since the start of the spring, members of the Penn community have been working to combat coronavirus and its many impacts. Some people are studying COVID-19 or developing vaccines, while others are 3D-printing face shields for health care workers and delivering fall courses online.

And while innovation in health care usually brings to mind new treatments and medicines, the efforts of clinicians, engineers, and IT specialists demonstrate the importance technological infrastructure for rapidly deployable, tech-based solutions so clinicians can provide the best care to patients amid social distancing and coronavirus restrictions.

The telemedicine revolution

In late March, telemedicine was key for allowing Penn Medicine clinicians to deliver care while avoiding potentially risky in-person interactions. Chief Medical Information Officer C. William Hanson III and his team helped set up the IT infrastructure for scaling up telemedicine capabilities and provided guidance to clinicians. Thanks to the quick pivot, Penn Medicine went from 300 telemedicine visits in February to more than 7,500 visits per day in a matter of weeks.

But far from seeing telemedicine as a temporary solution during the pandemic, Hanson has been a long-time advocate for this approach to health care. In his role as liaison between clinicians and the IT community in the past 10 years Hanson, helped establish remote ICU monitoring protocols and broadened opportunities for televisits with specialists. Now, with the pandemic removing many of the previous barriers to entry, be they technical, insurance-based, or simply a lack of familiarity, Hanson believes that telemedicine is here to stay.

“As the pandemic evolved, people were aware that telemedicine could help the health care system, as well as doctors and patients, during this crisis,” he says. “Now, there are definitely places where telemedicine makes good sense, and we will continue to use that as part of our way of handling a problem.” Other benefits include removing geographic barriers to entry for new patients, reduced appointment times, increased patient satisfaction, and reduced health care provider burnout.

Simple solutions for COVID-19 challenges

As the director of Penn’s Telestroke Program, neurologist Michael Mullen has experience diagnosing from a distance. This spring, telemedicine carts his group uses were repurposed in COVID ICUs. At the same time, Mullen and group wanted to expand their ability to assess stroke patients remotely, so he reached out to Brian Litt, faculty director of Penn Health-Tech, to see how he could collaborate to create an analogous telemedicine station using readily available, cost-effective components.

Rapid and simple solutions are at the heart of Penn’s ModLab, a subgroup of the GRASP lab focused on robots made of configurable individual components. As part of a COVID-19 rapid response initiative, engineers worked with Mullen to figure out a viable solution in record time. “The idea was to make it as simple and as fast as possible,” says graduate student Caio Mucchiani. “With robotics, usually you want to make things more sophisticated, however, given the situation, we needed to know how we could use off-the-shelf components to make something.”

Fellow graduate student Ken Chaney, postdoc Bernd Pfrommer, and Mucchiani came up with a plan that replicated the required specs of the existing telemedicine carts, including state-of-the-art cameras for detailed imaging as well as a reliable, easily rechargeable battery. The team then put together 10 telemedicine carts, assembling the prototypes with social distancing and masks at the GRASP lab in early April.

While changes to treatment approaches mean that these carts still require additional field testing, Mullen is still eager to expand the program, be it for diagnosing patients safely or educating medical students in an era of social distancing. “In the setting of COVID, when everything was getting crazy, it was remarkable to see the energy that GRASP brought to help,” adds Mullen. “Everyone was really busy, and it was amazing to see this group of people who wanted to use their expertise to help.”

Continue reading at Penn Today.

NB: Brian Litt is Professor in Neurology and Bioengineering.

Brian Litt Receives NIH Pioneer Award to Develop Implantable Neurodevices

Brian Litt, MD

Brian Litt, professor in Engineering’s Department of Bioengineering and the Perelman School of Medicine’s departments of Neurology and Neurosurgery, has received a five-year, $5.6 million Pioneer Award from the National Institutes of Health, which will support his research on implantable devices for monitoring, recording and responding to neural activity.

The Pioneer Award is part of the agency’s High-Risk, High-Reward Research Program honoring exceptionally creative scientists. It challenges investigators to pursue new research directions and develop groundbreaking, high-impact approaches to a broad area of biomedical or behavioral science. Litt’s neurodevice research represents a new frontier in addressing a wide variety of neurological conditions.

In epilepsy, for example, these devices would predict and prevent seizures; in Parkinson’s patients, implants will measure and communicate with patients to improve mobility, reduce tremor and enhance responsiveness. Other implants might improve hearing or psychiatric symptoms by querying patient perceptions, feelings, and altering stimulation patterns algorithmically to improve them

Continue reading about Litt’s Pioneer Award at Penn Medicine News.

Penn Bioengineering and COVID-19

A message from Penn Bioengineering Professor and Chair Ravi Radhakrishnan:

In response to the unprecedented challenges presented by the global outbreak of the novel coronavirus SARS-CoV-2, Penn Bioengineering’s faculty, students, and staff are finding innovative ways of pivoting their research and academic projects to contribute to the fight against COVID-19. Though these projects are all works in progress, I think it is vitally important to keep those in our broader communities informed of the critical contributions our people are making. Whether adapting current research to focus on COVID-19, investing time, technology, and equipment to help health care infrastructure, or creating new outreach and educational programs for students, I am incredibly proud of the way Penn Bioengineering is making a difference. I invite you to read more about our ongoing projects below.

RESEARCH

Novel Chest X-Ray Contrast

David Cormode, Associate Professor of Radiology and Bioengineering

Nanomedicine and Molecular Imaging Lab

Peter Noel, Assistant Professor of Radiology and BE Graduate Group Member

Laboratory for Advanced Computed Tomography Imaging

The Cormode and Noel labs are working to develop dark-field X-ray imaging, which may prove very helpful for COVID patients. It involves fabricating diffusers that incorporate gold nanoparticles to modify the X-ray beam. This method gives excellent images of lung structure. Chest X-ray is being used on the front lines for COVID patients, and this could potentially be an easy to implement modification of existing X-ray systems. The additional data give insight into the health state of the microstructures (alveoli) in the lung. This new contrast mechanics could be an early insight into the disease status of COVID-19 patients. For more on this research, see Cormode and Noel’s chapter in the forthcoming volume Spectral, Photon Counting Computed Tomography: Technology and Applications, edited by Katsuyuki Taguchi, Ira Blevis, and Krzysztof Iniewski (Routledge 2020).

Immunotherapy

Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering

Mitchell Lab

Mike Mitchell is working with Saar Gill (Penn Medicine) on engineering drug delivery technologies for COVID-19 mRNA vaccination. He is also developing inhalable drug delivery technologies to block COVID-19 internalization into the lungs. These new technologies are adaptations of prior research published Volume 20 of Nano Letters (“Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering” January 2020) and discussed in Volume 18 of Nature Reviews Drug Discovery (“Delivery Technologies for Cancer Immunotherapy” January 2019).

Respiratory Distress Therapy Modeling

Ravi Radhakrishnan, Professor, and Chair of Bioengineering and Professor of Chemical and Biomolecular Engineering

Radhakrishnan Lab

Computational Models for Targeting Acute Respiratory Distress Syndrome (ARDS). The severe forms of COVID-19 infections resulting in death proceeds by the propagation of the acute respiratory distress syndrome or ARDS. In ARDS, the lungs fill up with fluid preventing oxygenation and effective delivery of therapeutics through the inhalation route. To overcome this major limitation, delivery of antiinflammatory drugs through the vasculature (IV injection) is a better approach; however, the high injected dose required can lead to toxicity. A group of undergraduate and postdoctoral researchers in the Radhakrishnan Lab (Emma Glass, Christina Eng, Samaneh Farokhirad, and Sreeja Kandy) are developing a computational model that can design drug-filled nanoparticles and target them to the inflamed lung regions. The model combines different length-scales, (namely, pharmacodynamic factors at the organ scale, hydrodynamic and transport factors in the tissue scale, and nanoparticle-cell interaction at the subcellular scale), into one integrated framework. This targeted approach can significantly decrease the required dose for combating ARDS. This project is done in collaboration with Clinical Scientist Dr. Jacob Brenner, who is an attending ER Physician in Penn Medicine. This research is adapted from prior findings published in Volume 13, Issue 4 of Nanomedicine: Nanotechnology, Biology and Medicine: “Mechanisms that determine nanocarrier targeting to healthy versus inflamed lung regions” (May 2017).

Diagnostics

Sydney Shaffer, Assistant Professor of Bioengineering and Pathology and Laboratory Medicine

Syd Shaffer Lab

Arjun Raj, Professor of Bioengineering

Raj Lab for Systems Biology

David Issadore, Associate Professor of Bioengineering and Electrical and Systems Engineering

Issadore Lab

Arjun Raj, David Issadore, and Sydney Shaffer are working on developing an integrated, rapid point-of-care diagnostic for SARS-CoV-2 using single molecule RNA FISH. The platform currently in development uses sequence specific fluorescent probes that bind to the viral RNA when it is present. The fluorescent probes are detected using a iPhone compatible point-of-care reader device that determines whether the specimen is infected or uninfected. As the entire assay takes less than 10 minutes and can be performed with minimal equipment, we envision that this platform could ultimately be used for screening for active COVID19 at doctors’ offices and testing sites. Support for this project will come from a recently-announced IRM Collaborative Research Grant from the Institute of Regenerative Medicine with matching funding provided by the Departments of Bioengineering and Pathology and Laboratory Medicine in the Perelman School of Medicine (PSOM) (PI’s: Sydney Shaffer, Sara Cherry, Ophir Shalem, Arjun Raj). This research is adapted from findings published in the journal Lab on a Chip: “Multiplexed detection of viral infections using rapid in situ RNA analysis on a chip” (Issue 15, 2015). See also United States Provisional Patent Application Serial No. 14/900,494 (2014): “Methods for rapid ribonucleic acid fluorescence in situ hybridization” (Inventors: Raj A., Shaffer S.M., Issadore D.).

HEALTH CARE INFRASTRUCTURE

Penn Health-Tech Coronavirus COVID-19 Collaborations

Brian Litt, Professor of Bioengineering, Neurology, and Neurosurgery

Litt Lab

In his role as one of the faculty directors for Penn Health-Tech, Professor Brian Litt is working closely with me to facilitate all the rapid response team initiatives, and in helping to garner support the center and remove obstacles. These projects include ramping up ventilator capacity and fabrication of ventilator parts, the creation of point-of-care ultrasounds and diagnostic testing, evaluating processes of PPE decontamination, and more. Visit the Penn Health-Tech coronavirus website to learn more, get involved with an existing team, or submit a new idea.

BE Labs COVID-19 Efforts

BE Educational Labs Director Sevile Mannickarottu & Staff

BE Educational Labs staff members Dana Abulez (BE ’19, Master’s BE ’20) and Matthew Zwimpfer (MSE ’18, Master’s MSE ’19) take shifts to laser-cut face shields.

The George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace staff have donated their PPE to Penn Medicine. Two staff members (Dana Abulez, BE ’19, Master’s BE ’20 and Matthew Zwimpfer, MSE ’18, Master’s MSE ’19) took shifts to laser-cut face shields in collaboration with Penn Health-Tech. Dana and Matthew are also working with Dr. Matthew Maltese on his low-cost ventilator project (details below).

Low-Cost Ventilator

Matthew Maltese, Adjunct Professor of Medical Devices and BE Graduate Group Member

Children’s Hospital of Philadelphia Center for Injury Research and Prevention (CIRP)

Dr. Maltese is rapidly developing a low-cost ventilator that could be deployed in Penn Medicine for the expected surge, and any surge in subsequent waves. This design is currently under consideration by the FDA for Emergency Use Authorization (EUA). This example is one of several designs considered by Penn Medicine in dealing with the patient surge.

Face Shields

David F. Meaney, Solomon R. Pollack Professor of Bioengineering and Senior Associate Dean

Molecular Neuroengineering Lab

Led by David Meaney, Kevin Turner, Peter Bruno and Mark Yim, the face shield team at Penn Health-Tech is working on developing thousands of rapidly producible shields to protect and prolong the usage of Personal Protective Equipment (PPE). Learn more about Penn Health-Tech’s initiatives and apply to get involved here.

Update 4/29/20: The Penn Engineering community has sprung into action over the course of the past few weeks in response to COVID-19. Dr. Meaney shared his perspective on those efforts and the ones that will come online as the pandemic continues to unfold. Read the full post on the Penn Engineering blog.

OUTREACH & EDUCATION

Student Community Building

Yale Cohen, Professor of Otorhinolaryngology, Department of Psychology, BE Graduate Group Member, and BE Graduate Chair

Auditory Research Laboratory

Yale Cohen, and Penn Bioengineering’s Graduate Chair, is working with Penn faculty and peer institutions across the country to identify intellectually engaging and/or community-building activities for Bioengineering students. While those ideas are in progress, he has also worked with BE Department Chair Ravi Radhakrishnan and Undergraduate Chair Andrew Tsourkas to set up a dedicated Penn Bioengineering slack channel open to all Penn Bioengineering Undergrads, Master’s and Doctoral Students, and Postdocs as well as faculty and staff. It has already become an enjoyable place for the Penn BE community to connect and share ideas, articles, and funny memes.

Undergraduate Course: Biotechnology, Immunology, Vaccines and COVID-19 (ENGR 35)

Daniel A. Hammer, Alfred G. and Meta A. Ennis Professor of Bioengineering and Chemical and Biomolecular Engineering

The Hammer Lab

This Summer Session II, Professor Dan Hammer and CBE Senior Lecturer Miriam R. Wattenbarger will teach a brand-new course introducing Penn undergraduates to a basic understanding of biological systems, immunology, viruses, and vaccines. This course will start with the fundamentals of biotechnology, and no prior knowledge of biotechnology is necessary. Some chemistry is needed to understand how biological systems work. The course will cover basic concepts in biotechnology, including DNA, RNA, the Central Dogma, proteins, recombinant DNA technology, polymerase chain reaction, DNA sequencing, the functioning of the immune system, acquired vs. innate immunity, viruses (including HIV, influenza, adenovirus, and coronavirus), gene therapy, CRISPR-Cas9 editing, drug discovery, types of pharmaceuticals (including small molecule inhibitors and monoclonal antibodies), vaccines, clinical trials. Some quantitative principles will be used to quantifying the strength of binding, calculate the dynamics of enzymes, writing and solving simple epidemiological models, methods for making and purifying drugs and vaccines. The course will end with specific case study of coronavirus pandemic, types of drugs proposed and their mechanism of action, and vaccine development.
Update 4/29/20: Read the Penn Engineering blog post on this course published April 27, 2020.

Neuromatch Conference

Konrad Kording, Penn Integrates Knowledge University Professor of Bioengineering, Neuroscience, and Computer and Information Science

Kording Lab

Dr. Kording facilitated Neuromatch 2020, a large virtual neurosciences conferences consisting of over 3,000 registrants. All of the conference talk videos are archived on the conference website and Dr. Kording has blogged about what he learned in the course of running a large  conference entirely online. Based on the success of Neuromatch 1.0, the team are now working on planning Neuromatch 2.0, which will take place in May 2020. Dr. Kording is also working on facilitating the transition of neuroscience communication into the online space, including a weekly social (#neurodrinking) with both US and EU versions.

Neuromatch Academy

Konrad Kording, Penn Integrates Knowledge University Professor of Bioengineering, Neuroscience, and Computer and Information Science

Kording Lab

Dr. Kording is working to launch the Neuromatch Academy, an open, online, 3-week intensive tutorial-based computational neuroscience training event (July 13-31, 2020). Participants from undergraduate to professors as well as industry are welcome. The Neuromatch Academy will introduce traditional and emerging computational neuroscience tools, their complementarity, and what they can tell us about the brain. A main focus is not just on using the techniques, but on understanding how they relate to biological questions. The school will be Python-based making use of Google Colab. The Academy will also include professional development / meta-science, model interpretation, and networking sessions. The goal is to give participants the computational background needed to do research in neuroscience. Interested participants can learn more and apply here.

Journal of Biomedical Engineering Call for Review Articles

Beth Winkelstein, Vice Provost for Education and Eduardo D. Glandt President’s Distinguished Professor of Bioengineering

Spine Pain Research Lab

The American Society of Medical Engineers’ (ASME) Journal of Biomechanical Engineering (JBME), of which Dr. Winkelstein is an Editor, has put out a call for review articles by trainees for a special issue of the journal. The call was made in March 2020 when many labs were ramping down, and trainees began refocusing on review articles and remote work. This call continues the JBME’s long history of supporting junior faculty and trainees and promoting their intellectual contributions during challenging times.
Update 4/29/20: CFP for the special 2021 issue here.

Are you a Penn Bioengineering community member involved in a coronavirus-related project? Let us know! Please reach out to ksas@seas.upenn.edu.