Penn BE Undergraduates’ Plate Reader Design Published

Microplate reader, Wikimedia Commons

In a paper recently published in Biochemistry, a group of University of Pennsylvania Bioengineering students describe the results of their work designing a new, open-source, low-cost microplate reader. Plate readers are instruments designed to measure light absorption and fluorescence emission from molecules useful for clinical biomarker analyses and assays in a diverse array of fields including synthetic biology, optogenetics, and photosensory biology. This new design costs less than $3500, a significantly lower price than other commercially available alternatives. As described in the paper’s abstract, this design is the latest in a growing trend of open-source  hardware to enhance access to equipment for biology labs. The project originated as part of the annual International Genetically Engineering Machine Competition (iGEM), an annual worldwide competition focusing on “push[ing] the boundaries of synthetic biology by tackling everyday issues facing the world” (iGEM website).

The group consists of current junior Andrew Clark (BSE ’20) and recent graduates Karol Szymula (BSE ’18), who works in the lab of Dr. Danielle Bassett, and Michael Patterson (BSE ’18), a Master’s student in Bioengineering and Engineer of Instructional Laboratories. Assistant Professor of Bioengineering Dr. Brian Chow served as their faculty mentor alongside Director of Instructional Labs Sevile Mannickarottu and Michael Magaraci, a Ph.D. candidate in Bioengineering, all of whom serve as co-authors on the published article. The research and design of the project was conducted in the Stephenson Foundation Bioengineering Educational Laboratory here at the University of Pennsylvania’s Department of Bioengineering.

Chow Wins NIH Grant for Brain Study

Chow R01
Brian Chow, Ph.D.

The National Institutes of Health (NIH) has awarded a grant to Brian Chow, Ph.D., an assistant professor in the Department of Bioengineering, to study ultrafast genetically encoded voltage indicators (GEVIs). GEVIs are proteins that can detect changes in the electrical output of cells and report those changes by emitting different color light. His research seeks to create GEVIs that can report these changes much more rapidly – in fact, more than a million times more quickly than the velocity of the changes themselves – and apply these ultrafast GEVIs to the study of the brain.

The NIH-funded research will build on earlier research, employing de novo fluorescent proteins (dFPs) created in Dr. Chow’s lab. These dFPs, which are totally artificial and unrelated to natural proteins, report voltage changes in neurons by changing in brightness. Working with a team of investigators that includes faculty members from the Departments of Biochemistry & Biophysics and Neuroscience, Dr. Chow hopes to develop these ultrafast GEVIs.

“Monitoring thousands of neurons in parallel will shed new light on cognition, learning and memory, mood, and the physiological underpinnings of nervous system disorders,” he says.

Phytoplankton Research Earns Award

phytoplankton
Phytoplankton

The Scripps Institution of Oceanography at the University of California, San Diego, announced last week that one of its faculty members, Andrew Barton, PhD, received a Simons Foundation Early Career Award to study phytoplankton — a type of algae that requires sunlight to survive and that serves as the basis for much of the marine food chain.

Dr. Barton’s research will use the Scripps Plankton Camera System, which provides real-time photographic images to monitor these phytoplankton. While not exactly offering the excitement or cuteness factor of the Golden Retriever Puppy Cam, this sort of technology is incredibly important to better understanding certain aspects of marine biology.

“This is an interesting project that brings cutting edge image-processing technology to the natural habitat to study complex organismal dynamics in the real-world setting,” says Brian Chow, PhD, assistant professor of bioengineering at the University of Pennsylvania. “Establishing the critical interplay between an organism’s form and function and the forces of its local and global environments are important problems in physical biology in general. Diatoms have long been studied by bioengineers interested in self-assembly, programmed assembly, biomineralization, and biomimicry, so the work may lead to some novel insights for our field.”

Congratulations to Dr. Barton on receiving this prestigious award.