The Solomon R. Pollack Award for Excellence in Graduate Bioengineering Research is given annually to the most deserving Bioengineering graduate students who have successfully completed research that is original and recognized as being at the forefront of their field. This year Penn Bioengineering recognizes the outstanding work of two graduate students in Bioengineering: Erin Berlew and Rhea Chitalia.
Erin Berlew, Ph.D. candidate in Bioengineering
Erin Berlew is a Ph.D. candidate in the lab of Brian Chow, Associate Professor in Bioengineering. She successfully defended her thesis, titled “Single-component optogenetic tools for cytoskeletal rearrangements,” in December 2021. In her research, she used the BcLOV4 optogenetic platform discovered/developed in the Chow lab to control RhoGTPase signaling. Erin earned a B.S. in Chemistry from Haverford College in 2015 and was an Americorps member with City Year Philadelphia from 2015-2016. “Erin is a world-class bioengineering with an uncommon record of productivity gained through her complementary expertise in molecular, cellular, and computational biology,” says Chow. “She embodies everything wonderful, both academically and culturally, about our graduate program and its distinguished history.” Erin’s hobbies outside the lab include spending time with family, reading mystery novels, enjoying Philadelphia, and crossword puzzles. In the future, she hopes to continue to teach for the BE department (she has already taught ENGR 105 and served as a TA for undergraduate and graduate courses) and to conduct further research at Penn.
Rhea Chitalia, Ph.D. candidate in Bioengineering
Rhea Chitalia is a Ph.D. candidate in Bioengineering and a member of the Computational Biomarker Imaging Group (CBIG), advised by Despina Kontos, Matthew J. Wilson Associate Professor of Research Radiology II in the Perelman School of Medicine. Rhea completed her B.S.E. in Biomedical Engineering at Duke University in 2015. Her doctoral research concerns leveraging machine learning, bioinformatics, and computer vision to develop computational imaging biomarkers for improved precision cancer care. In December 2021 she successfully defended her thesis titled “Computational imaging biomarkers for precision medicine: characterizing intratumor heterogeneity in breast cancer.” “It has been such a privilege to mentor Rhea on her dissertation research,” says Kontos. “Rhea has been a star graduate student. Her work has made fundamental contributions in developing computational methods that will allow us to gain important insight into tumor heterogeneity by utilizing a multi-modality imaging approach.” David Mankoff, Matthew J. Wilson Professor of Research Radiology in the Perelman School of Medicine, served as Rhea’s second thesis advisor. “It was a true pleasure for me to work with Rhea and to Chair her BE Thesis Committee,” Mankoff adds. “Rhea’s Ph.D. thesis and thesis presentation was one of the best I have had the chance to be involved with in my graduate mentoring career.” After graduation, Rhea hopes to further precision medicine initiatives through the use of real world, multi-omic data in translational industry settings. She will be joining Invicro as an Imaging Scientist. In her spare time, Rhea enjoys trying new restaurants, reading, and spending time with friends and family.
The brighter edges of the cells in the middle and upper right panels show the optogenetic proteins collecting at the membrane after light exposure. At higher temperatures, however, the proteins become rapidly inactivated and thus do not stay at the membrane, resulting in the duller edges seen in the bottom right panel.
Most organisms have proteins that react to light. Even creatures that don’t have eyes or other visual organs use these proteins to regulate many cellular processes, such as transcription, translation, cell growth and cell survival.
The field of optogenetics relies on such proteins to better understand and manipulate these processes. Using lasers and genetically engineered versions of these naturally occurring proteins, known as probes, researchers can precisely activate and deactivate a variety of cellular pathways, just like flipping a switch.
Now, Penn Engineering researchers have described a new type of optogenetic protein that can be controlled not only by light, but also by temperature, allowing for a higher degree of control in the manipulation of cellular pathways. The research will open new horizons for both basic science and translational research.
Lukasz Bugaj, Bomyi Lim, and Brian Chow
Lukasz Bugaj, Assistant Professor in Bioengineering (BE), Bomyi Lim, Assistant Professor in Chemical and Biomolecular Engineering, Brian Chow, Associate Professor in BE, and graduate students William Benman in Bugaj’s lab, Hao Deng in Lim’s lab, and Erin Berlew and Ivan Kuznetsov in Chow’s lab, published their study in Nature Chemical Biology. Arndt Siekmann, Associate Professor of Cell and Developmental Biology at the Perelman School of Medicine, and Caitlyn Parker, a research technician in his lab, also contributed to this research.
The team’s original aim was to develop a single-component probe that would be able to manipulate specific cellular pathways more efficiently. The model for their probe was a protein called BcLOV4, and through further investigation of this protein’s function, they made a fortuitous discovery: that the protein is controlled by both light and temperature.
Four of Penn’s 2021 iGEM team (left to right): Juliette Hooper, Grace Qian, Saachi Datta, and Gloria Lee.
The University of Pennsylvania’s 2021 iGEM team has been awarded several distinctions in this year’s highly competitive iGEM Competition. The International Genetically Engineered Machine Competition is the largest synthetic biology community and the premiere synthetic biology competition for both university and high school level students from around the world. Each year, hundreds of interdisciplinary teams of students combine molecular biology techniques and engineering concepts to create novel biological systems and compete for prizes and awards through oral presentations and poster sessions.
The Penn team’s project, “OptoReader,” is a combined light-simulation device and plate reader, which makes optogenetic experiments more powerful and accessible. The abstract reads:
“Metabolic engineering has the potential to change the world, and optogenetic tools can make metabolic engineering research easier by providing spatiotemporal control over cells. However, current optogenetic experiments are low-throughput, expensive, and laborious, which makes them inaccessible to many. To tackle this problem, we combined a light-stimulation device with a plate reader, creating our OptoReader. This device allows us to automate ~100 complex optogenetic experiments at the same time. Because it is open source and inexpensive, our device would make optogenetic experiments more efficient and available to all.”
This year’s Penn team was mentored by Lukasz Bugaj, Assistant Professor in Bioengineering. In addition, the team was supported by Brian Chow, Associate Professor in Bioengineering. Chow has supported previous undergraduate iGEM teams at Penn, and was involved in the creation of the iGEM program during his time as a graduate student at MIT.
OptoReader took home the top prizes in three of the four categories in which it was nominated. These prizes include:
Best Foundational Advance (best in track)
Best Hardware (best from all undergraduate teams)
Best Presentation (best from all undergraduate teams)
They were also awarded a Gold Medal Distinction and were included in the Top 10 Overall (from all undergraduate teams, and the only team from the United States to make the top 10) and Top 10 Websites (from all undergraduate teams).
The awards were announced during iGEM’s online Jamboree Award Ceremony on November 14, 2021 (watch the full award ceremony here).
In addition to the outstanding awards recognition, OptoReader was also selected for an iGEM Impact Grant which awards teams $2,500 to continue development of their projects. This new initiative from the iGEM Foundation was announced earlier this year, and with the support of the Frederick Gardner Cottrell Foundation, is distributing a total of $225,000 in grant funds to 90 iGEM teams during the 2021 competition season. Learn more about the Impact Grant and read the full list of winning teams here.
Penn’s 2021 iGEM team was made up of an interdisciplinary group of women undergraduates from the School of Engineering and Applied Science (SEAS) and the School of Arts and Sciences (SAS):
Saachi Datta (B.A. in Biology and Religious Studies 2021)
Juliette Hooper (B.S.E. and M.S.E. in Bioengineering 2022)
Gabrielle Leavitt (B.S.E. in Bioengineering 2021 and current Master’s student in Bioengineering)
Gloria Lee (B.A. in Physics and B.S.E. in Bioengineering 2023)
Grace Qian (B.S.E. in Bioengineering 2023)
Lana Salloum (B.A. in Neuroscience 2022)
They were mentored by three doctoral students in Bioengineering: Will Benman (Bugaj Lab), David Gonzalez Martinez (Bugaj Lab), Gabrielle Ho (Chow Lab). Saurabh Malani, a graduate student in the Avalos Lab at Prince University, was also very involved in mentoring the team.
OptoReader
The graduate mentors were instrumental in quickly bringing the undergraduates up to speed on a diverse array of skills needed to accomplish this project including circuit design, optics, optogenetics, programming, and additive manufacturing. They then coached the team through building and testing prototypes, as well as accomplishing other objectives required for success at iGEM. These other objectives included establishing collaborations with other iGEM teams, performing outreach, and effectively communicating their project through a website and online presentations.
“This team and their work is outstanding,” said William Benman. “Not only did they sweep several awards, but they did it all with a small team and while working with technology they had no prior experience with. They created a device that not only increases accessibility to optogenetics but also allows optogenetic systems to interface directly with computer programs, allowing for completely new research avenues within the field. They are truly a remarkable group.”
Due to the COVID pandemic, the team operated virtually through the summer of 2020, and then continued in person in the summer of 2021 as the project progressed and more students returned to Penn’s campus. Upon return to campus, the work was conducted in both the Bugaj lab in the Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching laboratory in Penn Bioengineering and an interdisciplinary makerspace open to anyone at Penn. The team also collaborated with the Avalos Lab at Princeton University, which conducts research in the application of optogenetics to optimize production of valuable chemicals in microbes.
“I’m beyond excited about this phenomenal showing from team Penn at the iGEM Jamboree awards ceremony,” said faculty mentor Lukasz Bugaj. “This is truly outstanding recognition for what the team has accomplished, and it wouldn’t have happened without essential contributions from everyone on the team.”
Brian Chow added that this achievement is “no small feat,” especially for a hardware project. “The iGEM competition leans toward genetic strain engineering, but the advances in the field made by these incredible students were undeniable,” he said.
Going forward, the team plans to publish a scientific article and file a patent application describing their device. “It’s clear that there is excitement in the scientific community for what our students created, and we’re excited to share the details and designs of their work,” said Bugaj.
Congratulations to all the team members and mentors of OptoReader on this incredible achievement! Check out the OptoReader project website and Instagram to learn more about their project.
Jane graduated in Fall 2017 with both a B.S.E. in Bioengineering (with a Medical Devices Concentration) and M.S.E. in Bioengineering. Jane is currently an Automation Engineer at Mosa Meat (Maastricht, Netherlands) working on laboratory tools to scale up cultured beef production. Formerly, she was a Research & Development Engineer at Opentrons (Brooklyn, New York) working on affordable robots for life sciences research. She is also an instructor with Genspace Community Biology Lab (Brooklyn, New York).
Jane Shmushkis (BSE/MSE 2017)
“While at Penn, I worked in the Stephenson Foundation Educational Laboratory and Bio-MakerSpace and in the Chow Lab as a student researcher. The educational lab was a free space to mess around with rapid prototyping tools, including 3D printing, laser cutting, Arduino, and much more. The experience in synthetic biology research encouraged me to think of biology with an engineering lens and to have the confidence to plan my own experiments. The people I got to work with at the BioMakerSpace and the Chow Lab kept me optimistic through challenging semesters and excited to learn.
With this excitement to keep learning, I decided to submatriculate into the Bioengineering Master’s program. Because of the program’s flexibility, I could choose from a mix of project-based courses, like Biomechatronics and Modeling Biological Systems, and literature-based courses, like Tissue Engineering and Musculoskeletal Bioengineering. Outside of Bioengineering, I took classes to sharpen skills in part fabrication (Machine Design and Manufacturing) and programming (Computer Vision & Computational Photography). This breadth helped me realize how much I could do with a foundation in coding and mechanical design and an understanding of the life sciences.
Beyond Penn Engineering, I was involved in Penn Dance Company, CityStep Penn, and the Science & Technology Wing. Penn Dance was a necessary break for my body and mind. CityStep was a way to connect with the larger Philadelphia community through performing arts. STWing showed me how playful engineering can be. After a couple years on campus, I also built up the confidence to bike off campus. If you have a good helmet and quick reflexes, I really recommend it to explore more of Philly!”
This post is part of BE’s Alumni Spotlight series. Read more testimonies from BE Alumni on the BE website.
We are very pleased to announce that ten current and future graduate students in the Department of Bioengineering have received 2021 National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. Further information about the program can be found on the NSF website. BE is thrilled to congratulate our excellent students on these well-deserved accolades! Continue reading below for a list of 2021 recipients and descriptions of their research.
Current Students:
Puneeth Guruprasad
Puneeth Guruprasad is a Ph.D. student in the lab of Marco Ruella, Assistant Professor of Medicine in the Division of Hematology/Oncology and the Center for Cellular Immunotherapies at the Perelman School of Medicine. His work applies next generation sequencing methods to characterize tumors and study the genetic basis of resistance to cancer immunotherapy, namely chimeric antigen receptor (CAR) T cell therapy.
Gabrielle Ho
Gabrielle (Gabby) Ho is a Ph.D. student in the lab of Brian Chow, Associate Professor in Bioengineering. She works on design strategies for engineering near-infrared fluorescent proteins and tools.
Abbas Idris
Abbas Idris is a Master’s student in the lab of Lukasz Bugaj, Assistant Professor in Bioengineering. His work focuses on using optogenetic tools to develop controllable protein assemblies for the study of cell signaling behaviors.
Incoming Students:
Additionally, seven NSF GRFP honorees from other institutions will be joining our department as Ph.D. students in the fall of 2021. We congratulate them as well and look forward to welcoming them to Penn:
The junior year BE-MAD lab series includes modules on dialysis, drug delivery, insect limb control, microfluidics, cell-cell communication, ECG analysis (pictured here), and spectroscopy. (Image: Bioengineering Educational Lab)
While the majority of courses remained online this spring, a small number of lab-based undergraduate courses were able to resume limited in-person instruction. One course was BE 310, the second semester of the Bioengineering Modeling, Analysis, and Design lab sequence. Better known as BE-MAD, this junior-year bioengineering course was able to bring students back to the teaching lab safely this spring while adapting its curriculum to keep remote learners engaged with hands-on lab modules at home.
An Essential Step Towards Becoming a Bioengineer
After learning the basics of chemistry, physics, biology, and math during freshman year and studying bioengineering fundamentals throughout sophomore year, BE-MAD is designed to provide essential hands-on experience to bioengineering majors during their junior years. In BE-MAD, students integrate what they’ve learned so far in the classroom to addressing complex, real-world problems by breaking down the silos that exist across different STEM fields.
“Usually what we hear from students is that this BE 309/310 sequence is when they really feel like they are engineers,” says Brian Chow, one of the BE 310 instructors. “They can put what they learn in classes to work in some practical setting and applied context.”
BE-MAD is also an important course to prepare students for senior design and is designed to be a “safe space to fail,” allowing students to build confidence through trial and error within a supportive environment, explains Sevile G. Mannickarottu, director of the educational laboratories. “We’re trying to build skills needed for senior year as well as teaching students how to think critically about problems by pulling together the materials they’ve learned all in one place,” he says. “By senior year, we want them to, when presented with a problem, not be afraid.”
Adapting BE-MAD for Both Remote and Hybrid Instruction
Traditionally, the BE-MAD lab is taught in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary bioengineering teaching lab, and includes modules on dialysis, drug delivery, insect limb control, microfluidics, cell-cell communication, ECG analysis, and spectroscopy. In the fall, the first lab in the series (BE-309) pivoted to remote learning using video tutorials of lab experiments and providing real data to students for analysis.
This spring, with more aspects of on-campus life able to reopen, the Educational Laboratory staff and BE-MAD instructors developed protocols in collaboration with David Meaney, Penn Engineering senior associate dean and an instructor for BE 309, and Penn’s Environmental Health and Radiation Safety office to safely reopen the teaching lab and Bio-MakerSpace for both BE-310 and for bioengineering senior design students.
The BE-MAD lab was also recreated on Gather.Town, an online video chat platform where students can speak with group members or instructors. Student groups also had their own tables where they could meet virtually to work on data analysis and lab report writing.
To continue to meet the needs of remote students, BE 310 instructor Lukasz Bugaj says that the curriculum was adapted to be two parallel courses—one that could be done entirely at home and the other in-person. The challenge was to adjust the content so that it could be completed either in-person or virtually, and could be switched from in-person to virtual at a moment’s notice because of COVID precautions, all while maximizing the hands-on experience, says Bugaj. “That’s a real credit to the lab staff of Sevile and Michael Patterson, who put a lot of work into revamping this entire class.”
Spencer Glantz (left) examines a scheme for light-activated protein cleavage with Dr. Brian Chow (middle) and 2014 iGEM team member Daniel Cabrera (right).
Spencer Glantz, a graduate of the Penn Bioengineering doctoral program and former member of the Brian Chow Lab, was mentioned in a recent WHYY piece highlighting the efforts of Penn labs to develop rapid, at-home testing for COVID-19. Glantz is currently a co-leader of the molecular biology team for 4Catalyzer, a medical device incubator founded by National Medal of Technology and Innovation recipient, and sponsor of the annual Rothberg Catalyzer Makerthon competition, Jonathan Rothberg. 4Catalyzer is developing the testing technology while Penn researchers are working to evaluate its effectiveness.
Brian Chow, David Issadore, Dongeun (Dan) Huh, Linh Thi Xuan Phan, Amish Patel and Aleksandra Vojvodic
The School of Engineering and Applied Science has granted tenure to six faculty members, including three from the Department of Bioengineering.
Tenured faculty at Penn Engineering demonstrate teaching excellence and international leadership in their fields of study and research collaborations.
Brian Chow
Associate Professor in Bioengineering Chow’s research focuses on the discovery and engineering of photoreceptors and sensory proteins for manipulating and monitoring the physiology of genetically targeted cells, and the application of these tools to reveal principles of cellular dynamics. His work has advanced the rational design of light activated proteins and the use of optogenetic reagents to study cell signaling.
David Issadore
Associate Professor in Bioengineering Issadore’s research combines microelectronics, microfluidics, and nanomaterials to create miniaturized platforms for the diagnosis of disease. His work has the potential to radically change the way we diagnose and treat diseases by bringing the technologies out of the lab and directly to the point of care.
Dongeun (Dan) Huh
Associate Professor in Bioengineering Huh’s research aims to develop innovative bioengineering tools and technologies using biologically inspired design principles and micro- and nano-scale engineering techniques to create systems that mimic the structure and function of human physiological systems.
Linh Thi Xuan Phan
Associate Professor in Computer and Information Science Phan’s work focuses on making cyber-physical systems (CPS) safer, faster, and more secure, both by strengthening the theoretical foundations and by developing practical solutions. Her recent projects include a cloud platform with real-time capabilities, a new diagnosis technique for timing-related faults, and new ways to defend CPS against attacks from insiders and/or external attackers.
Amish Patel
Associate Professor in Chemical and Biomolecular Engineering Patel’s research strives to achieve a molecular-level understanding of solvation and transport in aqueous and polymeric systems, with applications ranging from the prediction of protein interactions to the design of advanced materials for water purification and energy storage. His group combines principles of statistical mechanics and liquid state theory with state-of-the-art molecular modeling and atomistic simulation techniques to study these biological, nanoscopic and polymeric systems.
Aleksandra Vojvodic
Associate Professor in Chemical and Biomolecular Engineering Vojvodic’s research focuses on theory and computation-driven materials design. Her lab uses computational frameworks to obtain fundamental understanding of surface and interface properties of complex materials that can be used to develop theoretical models for chemical transformations and energy conversion. These models have been used to predict new catalyst materials for several chemical reactions which have been experimentally synthesized and tested, validating the desired properties of the computationally predicted catalyst material.
We would like to congratulate Penn Bioengineering faculty members Brian Chow, Ph.D., Dongeun (Dan) Huh, Ph.D., and David Issadore, Ph.D., on all of their recent promotions to tenured positions as Associate Professors. Both Chow and Issadore taught the second half of the foundational course in the Penn Bioengineering undergraduate curriculum, Bioengineering Modeling, Analysis, and Design Laboratory, in which students form lab groups to complete modules in microfluidics, synthetic biology, bioelectrical signal analysis, and bioanalytical spectroscopy.
Brian Chow, Ph.D.
Outside of the classroom, Chow’s research focuses on the creation of dynamic input and output interfaces for cells through the use of optogenetics, synthetic biology, genomics, and device engineering. The Chow lab’s current projects include the exploration of functional diversity of photoreception, engineering optically active genetically encoded tools, and their applications in neuroscience and mammalian synthetic biology. His research is supported by the NIH and he is the recipient of a 2017 NSF CAREER Award. Chow also supports undergraduate innovations in research by hosting the annual Penn team for the International Genetically Engineered Machine (iGEM) competition, a program which he helped to create during his time as a graduate student at MIT. One group of Bioengineering students under Chow’s mentorship used the iGEM project as a springboard to create an accessible, open-source plate reader.
David Issadore, Ph.D.
The Issadore lab at Penn focuses on the use of microelectronics and microfluidics for medical diagnostics. In projects that combine elements of bioengineering, electrical engineering, chemical engineering, and applied physics, Issadore and his team use an interdisciplinary approach to create miniaturized low-cost platforms for disease diagnosis. His company Chip Diagnostics received the JPOD @ Philadelphia QuickFire Challenge Award last month. Earlier this year, Issadore taught the Penn Engineering course Appropriate Point of Care Diagnostics (APOC), which culminated in a service trip to Ghana (read blog posts written by participating students here). This fall, he will take over the core Bioengineering undergraduate course in Bioengineering Signals and Systems, which focuses on applications in ECG signaling, cochlear implants, and biomedical imaging.
Dan Huh, Ph.D.
Dr. Huh is the principal investigator of the BIOLines Lab at Penn, which is best known for its work on bioinspired engineering systems that Huh calls “organs-on-a-chip.” Using design and engineering principles based on microfluidics and biomimicry, the Huh lab creates microengineered systems that can reconstitute the structural and functional complexity of healthy and diseased human physiological systems in ways not possible using traditional cell culture techniques. His research has been featured in TEDx, and he has won several prestigious honors and awards including the Bernard Langer Distinguished Lectureship, Lush Prize, the McPherson Distinguished Lectureship, CRI Technology Impact Award, John J. Ryan Medal, Design of the Year Award and Best Product of the Year Award from London Design Museum, NIH Director’s New Innovator Award, and Analytical Chemistry Young Innovator Award. This fall, Huh will teach a graduate level course in biomicrofluidics that will cover the use of microfluidics for biomedical application.
To finish the second half of Bioengineering Modeling, Analysis, and Design (BE MAD) Laboratory – the hallmark laboratory course of Penn’s Bioengineering program – instructors Dr. Brian Chow and Dr. David Issadore tasked junior undergraduate students with creating their own spectrophotometers for potential use in detecting water-borne pathogens in a design process that involved rapid prototyping techniques, the use of low-cost optoelectronics, and the incorporation of automation software and a graphical user interface for data acquisition. The final projects were assessed for both the creativity of the structural design of the device, and their abilities to measure optical properties of fluorescein, a chromophore used in clinical diagnostics, to determine each device’s accuracy, sensitivity, precision, and dynamic range.
For the final project of the year, many groups planned adventurous structural innovations to house their spectrophotometer circuits. Some of this year’s highlights included a fish tank complete with flashing lights and goldfish, a motorized arm that could successfully shoot a ball into a miniature basketball hoop with every spectrophotometer reading, a guitar with the ability to actually play music, and a working carousel. “My group decided to make a version of the Easy Bake Oven, using an LED oven light bulb, and a motor to open the door,” said junior Alina Rashid. “Of course, it didn’t actually cook anything because of the spectrophotometer inside, but maybe next time!” All of these designs involved the use of CAD-modeling to create sketches and parts that could then be laser-cut or 3D-printed into physical structures. The Department of Bioengineering also allotted each group with a budget for students to purchase any additional parts they required for their designs that were not already available in the lab.
On Demo Day for the spectrophotometer projects, instructors, lab staff, and friends came to the Stephenson Foundation Bioengineering Educational Laboratory and Bio-MakerSpace to assess final designs and celebrate the end of the semester. Given three solutions of unknown concentrations, students used their completed spectrophotometers to create standard curves using Beer-Lambert’s Law and attempt to determine the concentrations of the provided solutions. “I always love Demo Day because that’s when all separate aspects of the project – the mechanical design, the code, the circuitry – come together to make a device that actually works the way we planned and wanted it to all along,” said junior Jessica Dubuque. After nearly a month of working on the projects, each lab group went into Demo Day with designs they were proud of, and ended the semester on a high note with many new insights and lab skills under their belt for the beginning of their Senior Design projects in the fall.