Penn Bioengineering Student Kaitlin Mrksich Named 2024 Goldwater Scholar

by Louisa Shepard

Four University of Pennsylvania undergraduates have received 2024 Goldwater Scholarships, awarded to second- or third-year students planning research careers in mathematics, the natural sciences, or engineering.

Penn’s 2024 Goldwater Scholars are third-years Hayle Kim, Eric Myzelev, and Eric Tao in the College of Arts and Sciences, and Kaitlin Mrksich in the School of Engineering and Applied Science.

They are among the 438 students named 2024 Goldwater Scholars from 1,353 undergraduates students nominated by 446 academic institutions in the United States, according to the Barry Goldwater Scholarship & Excellence in Education Foundation. Each scholarship provides as much as $7,500 each year for as many as two years of undergraduate study.

The students applied for the Goldwater Scholarship with assistance from Penn’s Center for Undergraduate Research and Fellowships. Penn has had 63 Goldwater Scholars named since Congress established the scholarship in 1986 to honor U.S. Senator Barry Goldwater.

Mrksich, from Hinsdale, Illinois, is majoring in bioengineering. She is interested in developing drug delivery systems that can serve as novel therapeutics for a variety of diseases. Mrksich works in the lab of Michael J. Mitchell where she investigates the ionizable lipid component of lipid nanoparticles for mRNA delivery. At Penn, Mrksich is the president of the Biomedical Engineering Society, where she plans community building and professional development events for bioengineering majors. She is a member of the Kite and Key Society, where she organizes virtual programming to introduce prospective students to Penn. She is a member of Tau Beta Pi engineering honor society, and the Sigma Kappa sorority. She also teaches chemistry to high schoolers as a volunteer in the West Philadelphia Tutoring Project through the Civic House. After graduating, Mrksich plans to pursue an M.D./Ph.D. in bioengineering.

Read the full announcement in Penn Today.

Mrksich was awarded a Student Award for Outstanding Research (Undergraduate) by the Society for Biomaterials earlier this year. Read the story in the BE Blog.

Riccardo Gottardi Receives BMES Rising Star Award

Riccardo Gottardi, Ph.D.

Riccardo Gottardi, Assistant Professor in Pediatrics and in Bioengineering and leader of the Bioengineering and Biomaterials Laboratory at the Children’s Hospital of Philadelphia (CHOP), received the Rising Star Award from the Biomedical Engineering Society-Cellular and Molecular Bioengineering (BMES-CMBE). The Rising Star Award recognizes a BMES-CMBE member who is at the early independent career stage and has made an outstanding impact on the field of cellular and molecular bioengineering. Awardees will give an oral presentation on their research at the BMES-CMBE conference in Puerto Rico in January and be recognized at the conference Gala dinner.

Dr. Gottardi’s research focuses on engineering solutions for pediatric health, primarily for airway disorders. He has previously received awards for work to create a biomaterial patch to repair the tympanic membrane and for work to develop cartilage implants to treat severe subglottic stenosis. He received grant support from the National Institutes of Health to further his work in subglottic stenosis.

This story originally appeared in the CHOP Cornerstone Blog.

Bioengineering Faculty Member Named ‘Young Innovator’ for Creation of Multiple Myeloma Therapy

by Abbey Porter

Michael Mitchell

Michael J. Mitchell, Associate Professor in Bioengineering at the University of Pennsylvania School of Engineering and Applied Science, has been named a “Young Innovator of Cellular and Molecular Bioengineering” by Cellular and Molecular Bioengineering, the journal of the Biomedical Engineering Society (BMES).

The award recognizes faculty who are conducting some of the most innovative and impactful studies in the field of biomedical engineering. Recipients will present their research and be officially recognized at the BMES Annual Meeting in October.

Mitchell is being honored for creating an RNA nanoparticle therapy that stops the spread of the deadly bone marrow cancer multiple myeloma and helps to eliminate it altogether. Known for being difficult to treat, the disease kills over 100,000 people every year.

“We urgently need innovative, effective therapies against this cancer,” Mitchell says. “The nanotechnology we developed can potentially serve as a platform to treat multiple myeloma and other bone marrow-based malignancies.”

Mitchell, along with Christian Figuerora-Espada, a doctoral student in Bioengineering, previously published a study in PNAS describing how their RNA nanoparticle therapy stops multiple myeloma from moving through the blood vessels and mutating. In their current paper in Cellular and Molecular Bioengineering, which expands upon this RNA nanoparticle platform, they show that inhibition of both multiple myeloma migration and adhesion to bone marrow blood vessels, combined with an FDA-approved multiple myeloma therapeutic, extends survival in a mouse model of multiple myeloma.

Read more in Penn Engineering Today.

Riccardo Gottardi Recognized for Airway Research

Matthew Aronson (left), Ph.D. student in Bioengineering, and Riccardo Gottardi, Assistant Proessor in Bioengineering and Pediatrics.

Riccardo Gottardi, Assistant Professor in Pediatrics in the Perelman School of Medicine and in Bioengineering in the School of Engineering and Applied Science, has been named a “Young Innovator of Cellular and Molecular Bioengineering” by Cellular and Molecular Bioengineering, the official journal of the Biomedical Engineering Society (BMES). Gottardi is Chief Scientist in the Pediatric Airway Frontier Program at the Children’s Hospital of Philadelphia (CHOP). He leads the Bioengineering and Biomaterials (Bio2) Lab, and was recognized here for his research to prevent subglottic stenosis in children.

Gottardi’s work in subglottic stensosis, a severe narrowing of the airway in response to intubation, was recently profiled in CHOP’s Cornerstone Blog. CHOP’s award press release describes Gottardi’s innovative treatment:

“Prior studies by Dr. Gottardi’s lab used in vitro models to demonstrate that incorporating AMPs into polymer-coated tubes can inhibit bacterial growth and modulate the upper-airway microbiome. In a recent study in Cellular and Molecular Engineering, led by [Bioengineering] PhD student Matthew Aronson of the Gottardi Lab, the researchers went a step further and used both ex vivo and in vivo models to show how their patent-pending antimicrobial peptide-eluting endotracheal tube (AMP-ET) effectively targeted the local airway microbiota, reducing inflammation and resolving stenosis.

‘I am honored to be recognized by Cellular and Molecular Engineering for this exciting and notable award,” Dr. Gottardi said. “We are hopeful that our airway innovation will show similar success in human trials, so that we can improve outcomes for intubated pediatric patients.’”

Read CHOP’s full announcement of the award here.

Alex Hughes Named CMBE Rising Star

A collage of photos: Alex Hughes presenting, the title slide of his presentation with the title "Interpreting geometric rules of early kidney formation for synthetic morphogenesis," and his acknowledgements slides.
Alex J. Hughes presents at the BMES CMBE conference in January 2023. (Image credit: Riccardo Gottardi, Assistant Professor in Pediatrics and Bioengineering)

Alex J. Hughes, Assistant Professor in the Department of Bioengineering, was one of thirteen recipients of the 2023 Rising Star Award for Junior Faculty by the Cellular and Molecular Bioengineering (CMBE) Special Interest Group. The Rising Star Award recognizes a CMBE member in their early independent career stage that has made an outstanding impact on the field of cellular and molecular bioengineering. CMBE is a special interest group of the Biomedical Engineering Society (BMES), the premier professional organization of bioengineers.

The Hughes Lab in Penn Bioengineering works to “bring developmental processes that operate in vertebrate embryos and regenerating organs under an engineering control framework” in order to “build better tissues.” Hughes’s research interest is in harnessing the developmental principles of organs, allowing him to design medically relevant scaffolds and machines. In 2020 he became the first Penn Engineering faculty member to receive the Maximizing Investigators’ Research Award (MIRA) from the National Institutes of Health (NIH), and he was awarded a prestigious CAREER Award from the National Science Foundation (NSF) in 2021. Most recently, Hughes’s work has focused on understanding the development of cells and tissues in the human kidney via the creation of “organoids”: miniscule organ models that can mimic the biochemical and mechanical properties of the developing kidney. Understanding and engineering how the kidney functions could open doors to more successful regenerative medicine strategies to address highly prevalent congenital and adult diseases.

Hughes and his fellow award recipients were recognized at the annual BMES CBME conference in Indian Wells, CA in January 2023.

Read the full list of 2023 CMBE Award Winners.

Penn Bioengineering Alumna Cynthia Reinhart-King is President Elect of BMES

Dr. Cynthia Reinhart-King, Engineering, BME, Photo by Joe Howell

Penn Bioengineering alumna Cynthia Reinhart-King, Cornelius Vanderbilt Professor of Engineering and Professor of Biomedical Engineering at Vanderbilt University, was elected the next President of the Biomedical Engineering Society (BMES), the largest professional society for biomedical engineers. Her term as president-elect started at the annual BMES meeting in October 2021.

Reinhart-King graduated with her Ph.D. from Penn Bioengineering in 2006. She studied in the lab of Daniel Hammer, Alfred G. and Meta A. Ennis Professor in Bioengineering and Chemical and Biomolecular Engineering as a Whitaker Fellow and went on to complete postdoctoral training as an Individual NIH NRSA postdoctoral fellow at the University of Rochester. Prior to joining Vanderbilt, she was on the faculty of Cornell University and received tenure in the Department of Biomedical Engineering. The Reinhart-King lab at Vanderbilt “uses tissue engineering, microfabrication, novel biomaterials, model organisms, and tools from cell and molecular biology to study the effects of mechanical and chemical changes in tissues during disease progression.”

Reinhart-King gave the 2019 Grace Hopper Distinguished Lecture, sponsored by the Department of Bioengineering. This lecture series recognizes successful women in engineering and seeks to inspire students to achieve at the highest level. She is a recipient of numerous prestigious awards, including the Rita Schaffer Young Investigator Award in 2010, an NSF CAREER Award, and the Mid-Career Award in 2018 from BMES.

In a Q&A on the BMES Blog, Reinhart-King said that:

“BMES is facing many challenges, like many societies, as we deal with the hurdles associated with COVID-19 and inequities across society. We must continue to address those challenges. However, we are also in a terrific window of having robust membership, many members who are eager to get involved with the society’s activities, and a national lens on science and scientists. One of my goals will be to identify and create opportunities for our members to help build the reach of the society and its member.”

Read “Cynthia Reinhart-King is president-elect of the Biomedical Engineering Society” in Vanderbilt News.

Bioengineering Graduate Sofia Gonzalez Honored with Leadership Awards

Sofia Gonzalez (BSE & MSE 2021)

Sofia Gonzalez, who graduated with both bachelor’s and master’s degrees in Bioengineering this spring, was one of a select number of Penn students to receive 2021 Student Leadership Awards. Gonzalez was awarded a Penn Alumni Student Award of Merit as well as the William A. Levi Kite & Key Society Award for Service and Scholarship. Awardees were celebrated during the university’s annual Ivy Day, “a tradition recognizing students’ leadership, service, and scholarship for nearly 150 years.”

Gonzalez discussed the importance of diverse representation in the Student Leadership Awards Book:

“Sofia reflected that on countless college tours, she noticed a striking pattern: only one of the ambassadors she encountered was a female engineer, and none of them were Latinx. While the nation was reckoning with racism, Sofia was leading critical discussions about how Kite & Key could improve in areas of diversity, equity, and inclusion to mirror the Penn student body. Sofia is now graduating, confident that she took measurable strides toward breaking the cycle of underrepresentation at America’s first University. Sofia’s work leaves a lasting legacy at Penn and beyond.”

Gonzalez also served as a Senior Advisor to the Biomedical Engineering Society (BMES) and as President of the Kite and Key Society, a society which welcomes all visitors to campus, acquaints prospective students and families with the undergraduate experience, and fosters a community of students dedicated to serving the University of Pennsylvania. Having completed her degrees, Gonzalez is headed for the first year of a rotational program as a member of the Merck Manufacturing Leadership Development Program in Durham, NC.

Following her time at Merck, Gonzalez will continue her education at the MIT Sloan School of Management. Gaining admission to the M.B.A. program via the Early Admission offering, she will matriculate within the following five years.

Read the full list of 2021 award winners and learn more about the awards on the Ivy Day website.

Bioengineering Round-Up (October 2019)

by Sophie Burkholder

Innovations in Advancing a Cure for Diabetes

The blue circle is the global symbol for diabetes. Wikimedia Commons.

Diabetes is one of the more common diseases among Americans today, with the American Diabetes Association estimating that approximately 9.5 percent of the population battles the condition today. Though symptoms and causes may vary across types and patients, diabetes generally results from the body’s inability to produce enough insulin to keep blood sugar levels in check. A new experimental treatment from the lab of Sha Jin, Ph.D., a biomedical engineering professor at Binghamton University, aims to use about $1.2 million in recent federal grants to develop a method for pancreatic islet cell transplantation, as those are the cells responsible for producing insulin.

But the catch to this new approach is that relying on healthy donors of these islet cells won’t easily meet the vast need for them in diabetic patients. Sha Jin wants to use her grants to consider the molecular mechanisms that can lead pluripotent stem cells to become islet-like organoids. Because pluripotent stem cells have the capability to evolve into nearly any kind of cell in the human body, the key to Jin’s research is learning how to control their mechanisms and signaling pathways so that they only become islet cells. Jin also wants to improve the eventual culture of these islet cells into three-dimensional scaffolds by finding ways of circulating appropriate levels of oxygen to all parts of the scaffold, particularly those at the center, which are notoriously difficult to accommodate. If successful in her tissue engineering efforts, Jin will not only be able to help diabetic patients, but also open the door to new methods of evolving pluripotent stem cells into mini-organ models for clinical testing of other diseases as well.

A Treatment to Help Others See Better

Permanently crossed eyes, a medical condition called strabismus, affects almost 18 million people in the United States, and is particularly common among children. For a person with strabismus, the eyes don’t line up to look at the same place at the same time, which can cause blurriness, double vision, and eye strain, among other symptoms. Associate professor of bioengineering at George Mason University, Qi Wei, Ph.D., hopes to use almost $2 million in recent funding from the National Institute of Health to treat and diagnose strabismus with a data-driven computer model of the condition. Currently, the most common method of treating strabismus is through surgery on one of the extraocular muscles that contribute to it, but Wei wants her model to eventually offer a noninvasive approach. Using data from patient MRIs, current surgical procedures, and the outcomes of those procedures, Wei hopes to advance and innovate knowledge on treating strabismus.

A Newly Analyzed Brain Mechanism Could be the Key to Stopping Seizures

Among neurological disorders, epilepsy is one of the most common. An umbrella term for a lot of different seizure-inducing conditions, many versions of epilepsy can be treated pharmaceutically. Some, however, are resistant to the drugs used for treatment, and require surgical intervention. Bin He, Ph. D., the Head of the Department of Biomedical Engineering at Carnegie Mellon University, recently published a paper in collaboration with researchers at Mayo Clinic that describes the way that seizures originating at a single point in the brain can be regulated by what he calls “push-pull” dynamics within the brain. This means that the propagation of a seizure through the brain relies on the impact of surrounding tissue. The “pull” he refers to is of the surrounding tissue towards the seizure onset zone, while the “push” is what propagates from the seizure onset zone. Thus, the strength of the “pull” largely dictates whether or not a seizure will spread. He and his lab looked at different speeds of brain rhythms to perform analysis of functional networks for each rhythm band. They found that this “push-pull” mechanism dictated the propagation of seizures in the brain, and suggest future pathways of treatment options for epilepsy focused on this mechanism.

Hyperspectral Imaging Might Provide New Ways of Finding Cancer

A new method of imaging called hyperspectral imaging could help improve the prediction of cancerous cells in tissue specimens. A recent study from a University of Texas Dallas team of researchers led by professor of bioengineering Baowei Fei, Ph.D., found that a combination of hyperspectral imaging and artificial intelligence led to an 80% to 90% level of accuracy in identifying the presence of cancer cells in a sample of 293 tissue specimens from 102 patients. With a $1.6 million grant from the Cancer Prevention and Research Institute of Texas, Fei wants to develop a smart surgical microscope that will help surgeons better detect cancer during surgery.

Fei’s use of hyperspectral imaging allows him to see the unique cellular reflections and absorptions of light across the electromagnetic spectrum, giving each cell its own specific marker and mode of identification. When paired with artificial intelligence algorithms, the microscope Fei has in mind can be trained to specifically recognize cancerous cells based on their hyperspectral imaging patterns. If successful, Fei’s innovations will speed the process of diagnosis, and potentially improve cancer treatments.

People and Places

A group of Penn engineering seniors won the Pioneer Award at the Rothberg Catalyzer Makerthon led be Penn Health-Tech that took place from October 19-20, 2019. SchistoSpot is a senior design project created by students Vishal Tien (BE ‘20), Justin Swirbul (CIS ‘20), Alec Bayliff (BE ‘20), and Bram Bruno (CIS ‘20) in which the group will design a low-cost microscopy dianostic tool that uses computer vision capabilities to automate the diagnosis of schistosomiasis, which is a common parasitic disease. Read about all the winners here.

Virginia Tech University will launch a new Cancer Research Initiative with the hope of creating an intellectual community across engineers, veterinarians, biomedical researchers, and other relevant scientists. The initiative will focus not only on building better connections throughout departments at the university, but also in working with local hospitals like the Carilion Clinic and the Children’s National Hospital in Washington, D.C. Through these new connections, people from all different areas of science and engineering and come together to share ideas.

Associate Professor of Penn Bioengineering Dani Bassett, Ph.D., recently sat down with the Penn Integrates Knowledge University Professor Duncan Watts, Ph.D., for an interview published in Penn Engineering. Bassett discusses the origins of network science, her research in small-world brain networks, academic teamwork, and the pedagogy of science and engineering. You can read the full interview here.

An all-female group of researchers from Northern Illinois University developed a device for use by occupational therapists that can capture three-dimensional images of a patient’s hand, helping to more accurately measure the hand or wrist’s range of motion. The group presented the abstract for their design at this year’s meeting of the Biomedical Engineering Society here in Philadelphia, where Penn students and researchers presented as well.

Penn Bioengineering at BMES 2019

The annual meeting of the Biomedical Engineering Society (BMES) will be held in our hometown of Philadelphia  October 16-19, 2019. The professional society for bioengineers and biomedical engineers will be taking over the city of Brotherly Love, and lots of faculty and students from Penn’s Bioengineering will be attending and presenting their research.

As previously mentioned here, Jason Burdick, Ph.D., the Robert D. Bent Professor of Bioengineering, is one of three chairs of the 2019 annual meeting. He shares this position with two other local faculty: Alisa Morss Clyne, Ph.D., Associate Professor of Mechanical Engineering and Mechanics at Drexel University; and Ruth Ochia, Ph.D., Associate Professor of Instruction in Bioengineering at Temple University. They have worked together since their appointment in 2017 to plan and chair the Philadelphia conference. Check out the video below with details of what to expect from BMES in Philly.

For those of you who have never been to BMES, the event is comprised of a mixture of academic and networking events, including keynote talks from top researchers, thousands of oral and poster presentations, participants from around the world, and social receptions. To plan your itinerary, click here for the program and agenda and here for the schedule at a glance. With the meeting being held locally this year, there are far too many presentations by Penn Bioengineering faculty and staff to list here, so check out BMES’s searchable scientific program or our searchable schedule of Penn faculty student activities at this year’s meeting (separated by day).

In addition to our academic participation, Penn Engineering and Bioengineering are also proud to sponsor this year’s meeting. Registered participants will have several venues to meet and mingle with Penn Engineering faculty, staff, and students and learn about its programs. Staff and volunteers will run a Penn Engineering booth (Booth #824) which will have literature on Penn departments and programs such as the Department of Bioengineering, the Center for Engineering MechanoBiology (CEMB), the Laboratory for Research on the Structure of Matter (LRSM), The Mahoney Institute for Neurosciences (MINS), and the Perelman School of Medicine’s Biomedical Graduate Studies group (BGS) and will be open 9:30am-5:00pm Thursday and Friday, and 9:30am-1:00pm during the conference.

For those interested in social events and networking, check out two back-to-back events on Friday night. From 6:30-8:30 pm, Penn’s Department of Bioengineering, CEMB, and LRSM will host a reception at the Philadelphia Marriott Downtown, Salon E. This will be followed by the meeting’s big BMES Dessert Bash at the Franklin Institute from 8:30-10:30 pm. (Please note: These events are open to registered conference participants only.) For those sticking around, there are no shortage of things to do in Philly, whether you are looking to site-see, shop, or dine.

We hope everyone has a wonderful time at the conference and enjoys Philadelphia! Let us know what activities you are enjoying most by tagging us on Twitter @pennbioeng or Instagram (pennbioengineering) and using the hashtag #pennbioengineering.

Michael Mitchell Receives BMES Rising Star Award

Michael Mitchell, PhD, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering at Penn, has been honored with a Rising Star Award in Cellular and Molecular Bioengineering from the Biomedical Engineering Society (BMES). According to the BMES website, “The BMES Cellular and Molecular Bioengineering Special Interest Group brings together researchers with diverse scientific and clinical interests with a common goal of understanding and engineering molecules, cells, their interactions and microenvironments in the pursuit of controlling biological processes and improving the practice of medicine.” Dr. Mitchell received the award and delivered a lecture at the 2019 Cellular and Molecular Bioengineering Conference in San Diego, California in January, 2019.

One of six early-stage investigators from across the nation to receive the honor, Dr. Mitchell was recognized for his work on engineering delivery technologies for cancer gene therapy and immunotherapy, which is helping to lay the foundation for a new class of therapeutic strategies against hematologic cancers such as multiple myeloma and leukemia. In 2018, Dr. Mitchell was awarded the NIH Director’s New Innovator Award for this research, and received the Burroughs Wellcome Fund Career Award at the Scientific Interface) in 2016. He joined the Penn faculty in January 2018 after completing an NIH NCI postdoctoral fellowship with Dr. Robert Langer at the Koch Institute for Integrative Cancer Research at MIT.