Sydney Shaffer Wins Christopher J. Marshall Award for Melanoma Research

Sydney Shaffer, M.D., Ph.D.

Sydney Shaffer, Assistant Professor in Bioengineering in the School of Engineering and Applied Science and in Pathology and Laboratory Medicine in the Perelman School of Medicine, was named the 2023 Christopher J. Marshall Award winner by the Society for Melanoma Research (SMR). The award recognizes Shaffer’s contributions to melanoma research on oncogenic signalling and molecular pathogenesis of this disease, as well as her rapid development as a rising star and leader in the field, which have helped to further the SMR’s goal to eradicate melanoma. The award was presented at the SMR annual meeting in Philadelphia in November 2023. 

The Christopher J. Marshall Award was established in 2015 by the SMR in partnership with Melanoma Research Foundation Congress to recognize a student, postdoctoral fellow, or new independent PI who has published a substantial and original contribution to studies of signal transduction and melanoma.

Shaffer joined Penn as an Assistant Professor in 2019. She holds a M.D.-Ph.D. in Medicine and Bioengineering from the University of Pennsylvania and conducted postdoctoral research in cancer biology in the lab of Junwei Shi, Associate Professor in Penn Medicine. The Syd Shaffer Lab is an interdisciplinary team which focuses on “understanding how differences between single-cells generate phenotypes such as drug resistance, oncogenesis, differentiation, and invasion [using] a combination of imaging and sequencing technologies to investigate rare single-cell phenomena.” A recent paper in Nature Communications details the team’s method to quantify long-lived fluctuations in gene expression that are predictive of later resistance to targeted therapy for melanoma.

Read the award announcement and the full list of prior winners at the SMR website.

The NEMO Prize Goes to Research Improving Soft-Tissue Transplant Surgeries

by Melissa Pappas

Daeyeon Lee (left), Oren Friedman (center) and Sergei Vinogradov (right)

Each year, the Nemirovsky Engineering and Medicine Opportunity (NEMO) Prize, funded by Penn Health-Tech, awards $80,000 to a collaborative team of researchers from the University of Pennsylvania’s Perelman School of Medicine and the School of Engineering and Applied Science for early-stage, interdisciplinary ideas.

This year, the NEMO Prize has been awarded to Penn Engineering’s Daeyeon Lee, Russel Pearce and Elizabeth Crimian Heuer Professor in Chemical and Biomolecular Engineering, Oren Friedman, Associate Professor of Clinical Otorhinolaryngology in the Perelman School of Medicine, and Sergei Vinogradov, Professor in the Department of Biochemistry and Biophysics in the Perelman School of Medicine and the Department of Chemistry in the School of Arts & Sciences. Together, they are developing a new therapy that improves the survival and success of soft-tissue grafts used in reconstructive surgery.

More than one million people receive soft-tissue reconstructive surgery for reasons such as tissue trauma, cancer or birth defects. Autologous tissue transplants are those where cells and tissue such as fat, skin or cartilage are moved from one part of a patient’s body to another. As the tissue comes from the patient, there is little risk of transplant rejection. However, nearly one in four autologous transplants fail due to tissue hypoxia, or lack of oxygen. When transplants fail the only corrective option is more surgery. Many techniques have been proposed and even carried out to help oxygenate soft tissue before it is transplanted to avoid failures, but current solutions are time consuming and expensive. Some even have negative side effects. A new therapy to help oxygenate tissue quickly, safely and cost-effectively would not only increase successful outcomes of reconstructive surgery, but could be widely applied to other medical challenges. 

The therapy proposed by this year’s NEMO Prize recipients is a conglomerate or polymer of microparticles that can encapsulate oxygen and disperse it in sustainable and controlled doses to specific locations over periods of time up to 72 hours. This gradual release of oxygen into the tissue from the time it is transplanted to the time it functionally reconnects to the body’s vascular system is essential to keeping the tissue alive. 

“The microparticle design consists of an oxygenated core encapsulated in a polymer shell that enables the sustained release of oxygen from the particle,” says Lee. “The polymer composition and thickness can be controlled to optimize the release rate, making it adaptable to the needs of the hypoxic tissue.” 

These life-saving particles are designed to be integrated into the tissue before transplantation. However, because they exist on the microscale, they can also be applied as a topical cream or injected into tissue after transplantation. 

“Because the microparticles are applied directly into tissues topically or by interstitial injection (rather than being administered intravenously), they surpass the need for vascular channels to reach the hypoxic tissue,” says Friedman. “Their micron-scale size combined with their interstitial administration, minimizes the probability of diffusion away from the injury site or uptake into the circulatory system. The polymers we plan to use are FDA approved for sustained-release drug delivery, biocompatible and biodegrade within weeks in the body, presenting minimal risk of side effects.”

The research team is currently testing their technology in fat cells. Fat is an ideal first application because it is minimally invasive as an injectable filler, making it versatile in remodeling scars and healing injury sites. It is also the soft tissue type most prone to hypoxia during transplant surgeries, increasing the urgency for oxygenation therapy in this particular tissue type.

Read the full story in Penn Engineering Today.

Daeyeon Lee and Sergei Vinogradov are members of the Penn Bioengineering Graduate Group.

Arjun Raj Receives 2023-24 Heilmeier Award

by Olivia J. McMahon

Arjun Raj, Ph.D.

Arjun Raj, Professor in Bioengineering in Penn Engineering, has been named the recipient of the 2023-24 George H. Heilmeier Faculty Award for Excellence in Research for “pioneering the development and application of single-cell, cancer-fighting technologies.”

The Heilmeier Award honors a Penn Engineering faculty member whose work is scientifically meritorious and has high technological impact and visibility. It is named for the late George H. Heilmeier, a Penn Engineering alumnus and member of the School’s Board of Advisors, whose technological contributions include the development of liquid crystal displays and whose honors include the National Medal of Science and Kyoto Prize.

Raj, who also holds an appointment in Genetics in the Perelman School of Medicine, is a pioneer in the burgeoning field of single-cell engineering and biology. Powered by innovative techniques he has developed for molecular profiling of single cells, his scientific discoveries range from the molecular underpinnings of cellular variability to the behavior of single cells across biology, including in diseases such as cancer.

Raj will deliver the 2023-24 Heilmeier Lecture at Penn Engineering during the spring 2024 semester.

This story originally appeared in Penn Engineering Today.

Read more stories featuring Dr. Raj here.

César de la Fuente Named ELHM Scholar by National Academy of Medicine

César de la Fuente, Ph.D.

César de la Fuente, Presidential Assistant Professor in Bioengineering, Psychiatry, Microbiology, and in Chemical and Biomolecular Engineering, has been selected as a 2023 Emerging Leaders in Health and Medicine (ELHM) Scholar by the National Academy of Medicine (NAM). With joint appointments in both Penn Engineering and the Perelman School of Medicine, de la Fuente works to combine human and machine intelligence to accelerate scientific discovery and develop useful tools and life-saving medicines.

NAM, founded in 1970, is an independent organization of professionals that advises the entire scientific community on critical health care issues. Each year, NAM chooses up to 10 new ELHM Scholars who are early-to-mid-career professionals from a wide range of health-related fields, including biomedical engineering, internal medicine, psychiatry, radiology and journalism to serve a three-year term.

“We are delighted that Dr. de la Fuente is receiving recognition from the National Academy of Medicine for his breakthrough contributions and exceptional leadership in the life sciences,” says Vijay Kumar, Nemirovsky Family Dean of Penn Engineering. “His pioneering work using computers to accelerate antibiotic discovery is extraordinary. We proudly celebrate his selection as part of this outstanding group of scholars.”

Read the full story in Penn Engineering Today.

Penn Bioengineers Awarded 2023 “Accelerating from Lab to Market Pre-Seed” Grants

Congratulations to the members of the Penn Bioengineering community who were awarded 2023 Accelerating from Lab to Market Pre-Seed Grants from the University of Pennsylvania Office of the Vice Provost for Research (OVPR).

Andrew Tsourkas, Ph.D.

Three faculty affiliated with Bioengineering were included among the four winners. Andrew Tsourkas, Professor in Bioengineering and Co-Director of the Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), was awarded for his project titled “Precise labeling of protein scaffolds with fluorescent dyes for use in biomedical applications.” Tsourkas’s team created protein scaffold that can better control the location and orientation of fluorescent dyes, commonly used for a variety of biomedical applications, such as labeling antibodies or fluorescence-guided surgery. The Tsourkas Lab specializes in “creating novel targeted imaging and therapeutic agents for the detection and/or treatment of diverse diseases.”

Also awarded were Penn Bioengineering Graduate Group members Mark Anthony Sellmeyer, Assistant Professor in Radiology in the Perelman School of Medicine, and Rahul M. Kohli, Associate Professor of Medicine in the Division of Infectious Diseases in the Perelman School of Medicine.

From the OVPR website:

“Penn makes significant commitments to academic research as one of its core missions, including investment in faculty research programs. In some disciplines, the path by which discovery makes an impact on society is through commercialization. Pre-seed grants are often the limiting step for new ideas to cross the ‘valley of death’ between federal research funding and commercial success. Accelerating from Lab to Market Pre-Seed Grant program aims to help to bridge this gap.”

Read the full list of winning projects and abstracts at the OVPR website.

Paul Ducheyne Honored with 2023 ISCM Hironobu Oonishi Memorial Award

Paul Ducheyne, Ph.D.

Paul Ducheyne, Professor Emeritus in Bioengineering and Orthopaedic Surgery Research, has won the 2023 Hironobu Oonishi Memorial Award from the International Society for Ceramics in Medicine (ISCM). This award, the ISCM’s top honor, will only be awarded ten times in total, with previous honorees hailing from Japan and France and focusing on clinical research and life sciences. As the fifth honoree, Ducheyne is the first biomaterials researcher and engineer to win this distinguished prize.

Dr. Hironobu Oonishi was one of the founders of the International Society for Ceramics in Medicine and a leading hip surgeon. He was known for his discovery that irradiated polyethylene displayed greatly improved wear resistance in total joint replacements. In his memory, the ISCM and Kyocera created the Hironobu Oohnishi Memorial Award, with the goal to honor scientists who contributed to ISCM and greatly advanced the clinical use of bioceramics. Each year, the awardee is selected by a committee chaired by Dr. Hiroshi Oonishi, Dr. Hironobu Oonishi’s son. Once ten awardees have been selected, the award granting process will be closed.

Dr. Ducheyne accepted his award at the ISCM annual meeting in Solothurn, Switzerland in October 2023, where he delivered the Opening Ceremony lecture entitled “Bioceramics and Clinical Use – the struggle of memory against forgetting.”

Dr. Ducheyne has been a leading scientist in the field of biomaterial research for decades, with seminal contributions to biomaterials research, especially as it relates to orthopaedics. In bioceramics research, he clearly delineated the unusual properties of engineered bioactive ceramics. Not only was he at the vanguard of the development of these materials, he also generated a fundamental understanding of how these materials exhibit bone bioactive properties and promote skeletal healing. His group has also studied inorganic controlled release materials and has demonstrated the utility of sol-gel synthesized silica-based nanoporous materials for therapeutic use. These materials may well represent a next generation of agents for delivery of drugs, including antibiotics, analgesics, and osteogenic and anti-inflammatory molecules.

During his tenure at Penn, he directed the Center for Bioactive Materials and Tissue Engineering. He was also a Special Guest Professor at the KU Leuven, Belgium. He has founded several successful companies: XeroThera, a spin-out from Penn, that is developing advanced controlled delivery concepts for prophylaxis and treatment of surgical infections; Orthovita, a leading, independent biomaterials company in the world with more than 250 employees at the time of its acquisition by Stryker in June 2011; and Gentis, Inc., which focuses on breakthrough concepts for spinal disorders.

Congratulations to Dr. Ducheyne from everyone at Penn Bioengineering.

Two Penn Bioengineers Receive NIH Director Award

by Nathi Magubane

Jina Ko (left) and Kevin Johnson (right), both from the School of Engineering and the Perelman School of Medicine with appointments in Bioengineering, have received the National Institute of Health Director’s Award to support their “highly innovative and broadly impactful” research projects through the High-Risk, High-Reward program.

The National Institutes of Health (NIH) has awarded grants to three researchers from the University of Pennsylvania through the NIH Common Fund’s High-Risk, High-Reward Research program. The research of Kevin B. Johnson, Jina Ko, and Sheila Shanmugan will be supported through the program, which funds “highly innovative and broadly impactful” biomedical or behavioral research by exceptionally creative scientists.

The High-Risk, High-Reward Research program catalyzes scientific discovery by supporting highly innovative research proposals that, due to their inherent risk, may struggle in the traditional peer-review process despite their transformative potential. Program applicants are encouraged to think “outside the box” and pursue trail-blazing ideas in any area of research relevant to the NIH’s mission to advance knowledge and enhance health.

Two Penn Bioengineering faculty, Johnson and Ko, are among 85 recipients for 2023.

Johnson, the David L. Cohen University Professor of Pediatrics, is a Penn Integrates Knowledge University Professor who holds appointments in the Department of Computer and Information Science in the School of Engineering and Applied Science and the Department of Biostatistics, Epidemiology, and Informatics in the Perelman School of Medicine. He also holds secondary appointments in Bioengineering, Pediatrics, and in the Annenberg School for Communication. He is widely known for his work with e-prescribing and computer-based documentation and, more recently, work communicating science to lay audiences, which includes a documentary about health-information exchange. Johnson has authored more than 150 publications and was elected to the American College of Medical Informatics, Academic Pediatric Society, National Academy of Medicine, International Association of Health Science Informatics, and American Institute for Medical and Biological Engineering.

Ko is an assistant professor in the Department of Pathology and Laboratory Medicine in the Perelman School of Medicine and Department of Bioengineering in the School of Engineering and Applied Science. She focuses on developing single molecule detection from single extracellular vesicles and multiplexed molecular profiling to better diagnose diseases and monitor treatment efficacy. Ko earned her Ph.D. in bioengineering at Penn in 2018, during which time she developed machine learning-based microchip diagnostics that can detect blood-based biomarkers to diagnose pancreatic cancer and traumatic brain injury. For her postdoctoral training, she worked at the Massachusetts General Hospital and the Wyss Institute at Harvard University as a Schmidt Science Fellow and a NIH K99/R00 award recipient. Ko developed new methods to profile single cells and single extracellular vesicles with high throughput and multiplexing.

Read the full announcement in Penn Today.

Bioengineering Faculty Member Named ‘Young Innovator’ for Creation of Multiple Myeloma Therapy

by Abbey Porter

Michael Mitchell

Michael J. Mitchell, Associate Professor in Bioengineering at the University of Pennsylvania School of Engineering and Applied Science, has been named a “Young Innovator of Cellular and Molecular Bioengineering” by Cellular and Molecular Bioengineering, the journal of the Biomedical Engineering Society (BMES).

The award recognizes faculty who are conducting some of the most innovative and impactful studies in the field of biomedical engineering. Recipients will present their research and be officially recognized at the BMES Annual Meeting in October.

Mitchell is being honored for creating an RNA nanoparticle therapy that stops the spread of the deadly bone marrow cancer multiple myeloma and helps to eliminate it altogether. Known for being difficult to treat, the disease kills over 100,000 people every year.

“We urgently need innovative, effective therapies against this cancer,” Mitchell says. “The nanotechnology we developed can potentially serve as a platform to treat multiple myeloma and other bone marrow-based malignancies.”

Mitchell, along with Christian Figuerora-Espada, a doctoral student in Bioengineering, previously published a study in PNAS describing how their RNA nanoparticle therapy stops multiple myeloma from moving through the blood vessels and mutating. In their current paper in Cellular and Molecular Bioengineering, which expands upon this RNA nanoparticle platform, they show that inhibition of both multiple myeloma migration and adhesion to bone marrow blood vessels, combined with an FDA-approved multiple myeloma therapeutic, extends survival in a mouse model of multiple myeloma.

Read more in Penn Engineering Today.

Sonura Named Among 2023 PHL Inno Under 25 Honorees

Gabriella Daltoso, Sophie Ishiwari, Gabriela Cano, Caroline Amanda Magro, and Tifara Eliana Boyce

A team of recent Penn Bioengineering graduates have been included in list of prominent young Philadelphia innovators as chosen by The Philadelphia Business Journal and PHL Inno.

Gabriella Daltoso, Sophie Ishiwari, Gabriela Cano, Caroline Amanda Magro, and Tifara Eliana Boyce founded Sonura as their Senior Design Project in Bioengineering. The team, who all graduated in 2023, picked up a competitive President’s Innovation Prize for their beanie that promotes the cognitive and socioemotional development of newborns in the NICU by protecting them from the auditory hazards of their environments while fostering parental connection. Now, they have been included in the list of fourteen Inno Under 25 honorees for 2023.

“To determine this year’s list, the Philadelphia Business Journal and PHL Inno sought nominations from the public and considered candidates put forth by our editorial team. To be considered, nominees must be 25 years of age or younger and work for a company based in Greater Philadelphia and/or reside in the region.

Honorees span a wide range of industries, including consumer goods, biotechnology and environmental solutions. Many are products of the region’s colleges and universities, though some studied farther afield before setting up shop locally.”

Read “Announcing the 2023 PHL Inno Under 25 honorees” and “Inno Under 25” in PHL Inno. Penn affiliates can subscribe through Penn’s library services.

Carl June to Receive 2024 Breakthrough Prize in Life Sciences

by Meagan Raeke

Image: Courtesy of Penn Medicine

CAR T cell therapy pioneer Carl June, the Richard W. Vague Professor in Immunotherapy in the Perelman School of Medicine and director of the Center for Cellular Immunotherapies (CCI) at Penn Medicine’s Abramson Cancer Center, has been named a winner of the 2024 Breakthrough Prize in Life Sciences for the development of chimeric antigen receptor (CAR) T cell immunotherapy, a revolutionary cancer treatment approach in which each patient’s T cells are modified to target and kill their cancer cells. The invention sparked a new path in cancer care, harnessing the power of patients’ own immune systems, a once-elusive goal that brought fresh options for those who could not be successfully treated with conventional approaches.

Founded in 2012, the Breakthrough Prizes are the world’s largest science awards, with $3 million awarded for each of the five main prize categories. June is the sixth Breakthrough Prize laureate from Penn, which joins Harvard and MIT among the institutions whose researchers have been honored with the most Breakthrough Prizes.

“This award is not only a testament to Dr. June’s outstanding contributions to science, but also a shining example of the caliber of discoveries and research which Penn faculty set their sights upon,” said Penn President Liz Magill. “We are immensely proud to have Dr. June as a member of the Penn academic community, and we know that CAR T cell therapy is just the first chapter in an inspiring and lifesaving new era of medicine.”

June is internationally recognized for his role in pioneering the CAR T cell therapy, which led to the first FDA-approved personalized cellular therapy, for children and young adults with the blood cancer known as acute lymphoblastic leukemia, in August of 2017—a step which has spurred five additional approvals of the technique in other blood cancers. June joined Penn in 1999, building momentum for Penn to become a global hub for cell and gene therapy. Gene-modified T cells engineered in June’s lab to retrain a patient’s own immune cells to attack cancer were used in the first clinical trial of CAR T cell therapy in 2010. Some of the earliest children and adults treated have experienced long-lasting remissions of 10 years or more. In addition to the FDA approvals that have made the therapy commercially available to patients across the world, thousands more have benefited from clinical trials testing these transformative treatments, including for the treatment of solid tumors and even autoimmune diseases like lupus.

“Dr. June’s tireless commitment to advancing T cell immunotherapy research has been life-changing for many patients affected by cancer, who have lived longer, fuller lives, thanks to the discoveries made in his lab,” said J. Larry Jameson,executive vice president of the University of Pennsylvania for the Health System and dean of the Perelman School of Medicine. “We are proud to see one of Penn’s most esteemed scientists recognized for the impact of his foundational work to develop a new class of cancer immunotherapy treatment.”

Read the full story in Penn Today.

June is a member of the Penn Bioengineering Graduate Group. Read more stories featuring June on the BE Blog here.