Newly Discovered ‘Encrypted Peptides’ Found in Human Plasma Exhibit Antibiotic Properties

by Melissa Pappas

The antimicrobial peptides the researchers studied are “encrypted” in that they are contained within Apolipoprotein B, a blood plasma protein that is not directly involved in the immune response, but are not normally expressed on their own.

The rise of drug-resistant bacteria infections is one of the world’s most severe global health issues, estimated to cause 10 million deaths annually by the year 2050. Some of the most virulent and antibiotic-resistant bacterial pathogens are the leading cause of life-threatening, hospital-acquired infections, particularly dangerous for immunocompromised and critically ill patients. Traditional and continual synthesis of antibiotics will simply not be able to keep up with bacteria evolution.

To avoid the continual process of synthesizing new antibiotics to target bacteria as they evolve, Penn Engineers have looked at a new, natural resource for antibiotic molecules.

César de la Fuente, Ph.D.

A recent study on the search for encrypted peptides with antimicrobial properties in the human proteome has located naturally occurring antibiotics within our own bodies. By using an algorithm to pinpoint specific sequences in our protein code, a team of Penn researchers along with collaborators, led by César de la Fuente, Presidential Assistant Professor in Psychiatry, Bioengineering, Microbiology, and Chemical and Biomolecular Engineering, and Marcelo Torres, a post doc in de la Fuente’s lab, were able to locate novel peptides, or amino acid chains, that when cleaved, indicated their potential to fend off harmful bacteria.

Now, in a new study published in ACS Nano, the team along with Angela Cesaro, the lead author and post doc in de la Fuente’s lab, have identified three distinct antimicrobial peptides derived from a protein in human plasma and demonstrate their abilities in mouse models. Angela Cesaro performed a great part of the activities during her PhD under the supervision of corresponding author, Professor Angela Arciello, from the University of Naples Federico II. The collaborative study also includes Utrecht University in the Netherlands.

“We identified the cardiovascular system as a hot spot for potential antimicrobials using an algorithmic approach,” says de la Fuente. “Then we looked closer at a specific protein in the plasma.”

Read the full story in Penn Engineering Today.

Penn Bioengineering Celebrates Five Researchers on Highly Cited Researchers 2021 List

The Department of Bioengineering is proud to announce that five of our faculty have been named on the annual Highly Cited Researchers™ 2021 list from Clarivate:

Dani Bassett, Ph.D.

Dani S. Bassett, J. Peter Skirkanich Professor in Bioengineering and in Electrical and Systems Engineering
Bassett runs the Complex Systems lab which tackles problems at the intersection of science, engineering, and medicine using systems-level approaches, exploring fields such as curiosity, dynamic networks in neuroscience, and psychiatric disease. They are a pioneer in the emerging field of network science which combines mathematics, physics, biology and systems engineering to better understand how the overall shape of connections between individual neurons influences cognitive traits.

Robert D. Bent Chair
Jason Burdick, Ph.D.

Jason A. Burdick, Robert D. Bent Professor in Bioengineering
Burdick runs the Polymeric Biomaterials Laboratory which develops polymer networks for fundamental and applied studies with biomedical applications with a specific emphasis on tissue regeneration and drug delivery. The specific targets of his research include: scaffolding for cartilage regeneration, controlling stem cell differentiation through material signals, electrospinning and 3D printing for scaffold fabrication, and injectable hydrogels for therapies after a heart attack.

César de la Fuente, Ph.D.

César de la Fuente, Presidential Assistant Professor in Bioengineering and Chemical & Biomedical Engineering in Penn Engineering and in Microbiology and Psychiatry in the Perelman School of Medicine
De la Fuente runs the Machine Biology Group which combines the power of machines and biology to prevent, detect, and treat infectious diseases. He pioneered the development of the first antibiotic designed by a computer with efficacy in animals, designed algorithms for antibiotic discovery, and invented rapid low-cost diagnostics for COVID-19 and other infections.

Carl June, M.D.

Carl H. June, Richard W. Vague Professor in Immunotherapy in the Perelman School of Medicine and member of the Bioengineering Graduate Group
June is the Director for the Center for Cellular Immunotherapies and the Parker Institute for Cancer Therapy and runs the June Lab which develops new forms of T cell based therapies. June’s pioneering research in gene therapy led to the FDA approval for CAR T therapy for treating acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

Vivek Shenoy, Ph.D.

Vivek Shenoy, Eduardo D. Glandt President’s Distinguished Professor in Bioengineering, Mechanical Engineering and Applied Mechanics (MEAM), and in Materials Science and Engineering (MSE)
Shenoy runs the Theoretical Mechanobiology and Materials Lab which develops theoretical concepts and numerical principles for understanding engineering and biological systems. His analytical methods and multiscale modeling techniques gain insight into a myriad of problems in materials science and biomechanics.

The highly anticipated annual list identifies researchers who demonstrated significant influence in their chosen field or fields through the publication of multiple highly cited papers during the last decade. Their names are drawn from the publications that rank in the top 1% by citations for field and publication year in the Web of Science™ citation index.

Bassett and Burdick were both on the Highly Cited Researchers list in 2019 and 2020.

The methodology that determines the “who’s who” of influential researchers draws on the data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information™ at Clarivate. It also uses the tallies to identify the countries and research institutions where these scientific elite are based.

David Pendlebury, Senior Citation Analyst at the Institute for Scientific Information at Clarivate, said: “In the race for knowledge, it is human capital that is fundamental and this list identifies and celebrates exceptional individual researchers who are having a great impact on the research community as measured by the rate at which their work is being cited by others.”

The full 2021 Highly Cited Researchers list and executive summary can be found online here.

César de La Fuente Uses AI to Discover Germ-fighting Peptides

César de la Fuente, PhD

The impending danger of bacterial resistance to antibiotics is well-documented within the scientific community. Bacteria are the most efficient evolvers, and their ability to develop tolerance to drugs, in addition to antibiotic overuse and misuse, means that researchers have had to get particularly resourceful to ensure the future of modern medicine.  

Presidential Assistant Professor in Bioengineering, Microbiology, Psychiatry, and Chemical and Biomolecular Engineering César de la Fuente and his team are using an algorithm to search the human genome for microbe-fighting peptides. So far, the team has synthesized roughly 55 peptides that, when tested against popular drug-resistant microbes such as the germ responsible for staph infections, have proven to prevent bacteria from replicating.  

WIRED’s Max G. Levy recently spoke with de la Fuente and postdoctoral researcher and study collaborator Marcelo Torres about the urgency of the team’s work, and why developing these solutions is critical to the survival of civilization as we know it. The team’s algorithm, based on pattern recognition software used to analyze images, makes an otherwise insurmountable feat tangible.  

De la Fuente’s lab specializes in using AI to discover and design new drugs. Rather than making some all-new peptide molecules that fit the bill, they hypothesized that an algorithm could use machine learning to winnow down the huge repository of natural peptide sequences in the human proteome into a select few candidates.

“We know those patterns—the multiple patterns—that we’re looking for,” says de la Fuente. “So that allows us to use the algorithm as a search function.”

Read Max G. Levy’s An AI Finds Superbug-Killing Potential in Human Proteins” at WIRED. 

This story previously appeared in Penn Engineering Today.

Penn Researchers Show ‘Encrypted’ Peptides Could be Wellspring of Natural Antibiotics

by Melissa Pappas

César de la Fuente, Ph.D.

While biologists and chemists race to develop new antibiotics to combat constantly mutating bacteria, predicted to lead to 10 million deaths by 2050, engineers are approaching the problem through a different lens: finding naturally occurring antibiotics in the human genome.

The billions of base pairs in the genome are essentially one long string of code that contains the instructions for making all of the molecules the body needs. The most basic of these molecules are amino acids, the building blocks for peptides, which in turn combine to form proteins. However, there is still much to learn about how — and where — a particular set of instructions are encoded.

Now, bringing a computer science approach to a life science problem, an interdisciplinary team of Penn researchers have used a carefully designed algorithm to discover a new suite of antimicrobial peptides, hiding deep within this code.

The study, published in Nature Biomedical Engineering, was led by César de la Fuente, Presidential Assistant Professor in Bioengineering, Microbiology, Psychiatry, and Chemical and Biomolecular Engineering, spanning both Penn Engineering and Penn Medicine, and his postdocs Marcelo Torres and Marcelo Melo. Collaborators Orlando Crescenzi and Eugenio Notomista of the University of Naples Federico II also contributed to this work.

“The human body is a treasure trove of information, a biological dataset. By using the right tools, we can mine for answers to some of the most challenging questions,” says de la Fuente. “We use the word ‘encrypted’ to describe the antimicrobial peptides we found because they are hidden within larger proteins that seem to have no connection to the immune system, the area where we expect to find this function.”

Read the full story in Penn Engineering Today.

Engineering Bacteria-Killing Molecules from Wasp Venom

César de la Fuente, PhD

César de la Fuente a Presidential Assistant Professor in the Perelman School of Medicine’s departments of Psychiatry and Microbiology and Engineering’s department of Bioengineering, has racked up accolades for his innovative, computational approach to discovering new antibiotics.

Now, in his most recent study, de la Fuente has shown how these vital drugs might be derived from wasp venom.

The study, published in The Proceedings of the National Academy of Sciences, involved altering a highly toxic small protein from a common Asian wasp species, Vespula lewisii, the Korean yellow-jacket wasp. The alterations enhanced the molecule’s ability to kill bacterial cells while greatly reducing its ability to harm human cells. In animal models, de la Fuente and his colleagues showed that this family of new antimicrobial molecules made with these alterations could protect mice from otherwise lethal bacterial infections.

There is an urgent need for new drug treatments for bacterial infections, as many circulating bacterial species have developed a resistance to older drugs. The U.S. Centers for Disease Control & Prevention has estimated that each year nearly three million Americans are infected with antibiotic-resistant microbes and more than 35,000 die of them. Globally the problem is even worse: Sepsis, an often-fatal inflammatory syndrome triggered by extensive bacterial infection, is thought to have accounted for about one in five deaths around the world as recently as 2017.

“New antibiotics are urgently needed to treat the ever-increasing number of drug-resistant infections, and venoms are an untapped source of novel potential drugs. We think that venom-derived molecules such as the ones we engineered in this study are going to be a valuable source of new antibiotics,” says de la Fuente.

De la Fuente and his team started with a small protein, or “peptide,” called mastoparan-L, a key ingredient in the venom of Vespula lewisii wasps. Mastoparan-L-containing venom is usually not dangerous to humans in the small doses delivered by wasp stings, but it is quite toxic. It destroys red blood cells, and triggers a type of allergic/inflammatory reaction that in susceptible individuals can lead to a fatal syndrome called anaphylaxis—in which blood pressure drops and breathing becomes difficult or impossible.

Mastoparan-L (mast-L) also is known for its moderate toxicity to bacterial species, making it a potential starting point for engineering new antibiotics. But there are still some unknowns, including how to enhance its anti-bacterial properties, and how to make it safe for humans.

Continue reading at Penn Medicine News.

César de la Fuente on AIChE’s 35 Under 35 List

César de la Fuente, PhD

César de la Fuente, Presidential Assistant Professor in Psychiatry, Microbiology, and Bioengineering, was named one of the American Institute of Chemical Engineers’ (AIChE) 35 members under 35 for 2020.

“The AIChE 35 Under 35 Award was founded to recognize young chemical engineers who have achieved greatness in their fields,” reads the 2020 award announcement. “The winners are a group of driven, engaged, and socially active professionals, representing the breadth and diversity that chemical engineering exemplifies.”

De la Fuente was named in the list’s “Bioengineering” category for his his lab’s work in machine biology. Their goal is to develop computer-made tools and medicines that will combat antibiotic resistance. De la Fuente has already been featured on several other young innovators lists, including MIT Technology Review’s 35 under 35 and GEN’s Top 10 under 40, both in 2019. His research in antibiotic resistance has been profiled in Penn Today and Penn Engineering Today, and he was recently awarded Penn Health-Tech’s inaugural NEMO Prize for his proposal to develop paper-based COVID diagnostic system that could capture viral particles on a person’s breath.

In addition to being named on the 2020 list, the honorees will receive a $500 prize and will be celebrated at the 2020 AIChE Annual Meeting this November.

Learn more about de la Fuente’s pioneering research on his lab website.

Machine Learning Reveals New Antibiotics for Resistant Bacteria

Cesar de la Fuente-Nunez, PhD

Once hailed as medical miracles, antibiotics are losing their effectiveness due to the rapid increase of bacterial immunity.

Researchers are scrambling to keep up with evolution, and they are currently exploring how machine learning can be applied to microbiology to develop more effective treatments.

In the past, researchers have studied bacteria behavior and used their findings to work against the natural patterns of bacterial life. In the 1980s, computer-assisted screening methods helped researchers in their efforts but few developments surfaced from their work. It seemed that there were no new antibiotics to be found using traditional methods, and pharmaceutical companies stepped away from funding antibiotic development in favor of more profitable drugs used to treat chronic conditions. But a new field of research shows a way forward, thanks to the massive advances in computing that have occurred over the intervening decades.

Among the pioneering researchers in this field is César de La Fuente, Presidential Assistant Professor in Psychiatry, Microbiology and Bioengineering. De La Fuente is accelerating the discovery of new antibiotics with his Drug Repurposing Hub, a library of more than 6,000 compounds that is using machine learning algorithms to seek out possible solutions for human disease. With his compound library, de La Fuente is able to examine drugs already approved by the FDA and hunt for new, more effective applications.

In addition to this work, de La Fuente and his colleagues are interested in using machine learning to innovate drug design itself. His lab uses a machine learning platform to generate new molecules in silico and perform experiments on them. Once the results of the experiments come in, they are fed back into the computer so the machine learning platform can continuously learn and improve its findings from the data.

In a recent interview with Katherine Harmon Courage in Quanta Magazine, de La Fuente said:

“The hypothesis is that nature has run out of inspiration in terms of providing us with new antibiotics. That’s why we think that machines … could diversify natural molecules to convert them to synthetic versions that would be much more effective.”

Originally posted on the Penn Engineering blog. Read more about de La Fuente’s work and other researchers exploring the computational design of new antibiotics in Quanta Magazine or The Atlantic.

Computer-generated Antibiotics, Biosensor Band-Aids, and the Quest to Beat Antibiotic Resistance

By Michele W. Berger

Imagine if a computer could learn from molecules found in nature and use an algorithm to generate new ones. Then imagine those molecules could get printed and tested in a lab against some of the nastiest, most dangerous bacteria out there — bacteria quickly becoming resistant to our current antibiotic options.

Or consider a bandage that can sense an infection with fewer than 100 bacterial cells present in an open wound. What if that bandage could then send a signal to your phone letting you know an infection had started and asking you to press a button to trigger the release of the treatment therapy it contained?

These ideas aren’t science fiction. They’re projects happening right now, in various stages, in the lab of synthetic biologist , who joined the University as a Presidential Professor in May 2019. His ultimate goal is to develop the first computer-made antibiotics. But beyond that, his lab — which includes three postdoctoral fellows, a visiting professor, and a handful of graduate students and undergrads — has many other endeavors that sit squarely at the intersection of computer science and microbiology.

Computer-generated antibiotics

Antibiotic resistance is becoming a dangerous problem, both in the United States and worldwide. According to the , each year in the U.S., at least 2.8 million people get infections that antibiotics can’t help, and more than 35,000 die from those infections. Around the world, common ailments like pneumonia and food-borne illness are getting harder to treat.

De la Fuente poses near Penn’s “Biopond”
De la Fuente earned his bachelor’s degree in biotechnology, then a doctorate in microbiology and immunology and a postdoc in synthetic biology and computational biology. Combining these fields led him to the innovative work his lab does today.

New antibiotics are needed, and according to de la Fuente, it’s time to look beyond the traditional approach.

“We’ve relied on nature as a source of antibiotics for many, many years. My whole hypothesis is that nature has perhaps run out of inspiration,” says de la Fuente, who has appointments in the and the . “We haven’t been able to discover any new scaffolds for many years. Can we digitize that information, nature’s chemistry, to be able to create and discover new molecules?”

To do that, his team turned to amino acids, the building blocks of protein molecules. The 20 that occur naturally bond in countless sequences and lengths, then fold to form different proteins. The sequencing possibilities are expansive, more than the number of stars in the universe. “We could never synthesize all of them and just see what happens,” says postdoc Marcelo Melo. “We have to combine the chemical knowledge — decades of chemistry on these tell us how they behave — with the computational side, because a computer can find patterns unlike any human could.”

Using machine learning, the researchers provide the computer with natural molecules that successfully work against bacteria. The computer learns from those examples, then generates new, artificial molecules. “We try this back and forth and hopefully we find patterns, new patterns that we can explore, instead of blindly searching,” Melo says.

The computer can then test each artificial sequence virtually, setting aside the most successful components and tossing the rest, in a form of computational natural selection. Those pieces with the highest potential get used to create new sequences, theoretically producing better and better ones each time.

De la Fuente’s team has seen some promising results already: “A lot of the molecules we’ve synthesized have worked,” he says. “The best ones worked in animal models. They were able to reduce infections in mice — which was pretty cool, given that the computer generated the whole thing.” Still, de la Fuente says the work is years away from producing anything close to a shelf-ready antibiotic.

Continue reading on .