Tissue Folding Processes Further Unraveled

tissue folding
Alex Hughes, Ph.D.

One of the key processes in embryonic development and growth through childhood and adolescence is that of how tissue folds into the specific shapes required for them to function in the body.  For instance, mesenchymal stem cells, which form a variety of tissues including bones, muscles, and fat, are required to “know” what shapes to take on as they form organ systems and other structures. Therefore, a big concern in tissue engineering is determining how to control these processes of tissue folding.

Just in time for his arrival at Penn Bioengineering, Dr. Alex Hughes, a new assistant professor in the department, is the lead author on a new paper in Developmental Cell that explores this concern. The study was coauthored with Dr. Zev Gartner of the University of California, Berkeley, where Dr. Hughes just finished a postdoctoral fellowship. In the paper, the authors used three-dimensional cell-patterning techniques, embryonic tissue explants, and finite element modeling to determine that the folding process involves the interaction of a protein called myosin II with the extracellular matrix, itself the molecular material that provides a structural framework for developing tissues. With the knowledge gained in the initial experiments, the authors were then able to reproduce the tissue folding process in the lab.

“Bioengineers are currently thinking about building tissues,” Dr. Hughes says, “not just at the level of organoids, but at the level of organs in the body. One of my interests at Penn is to harness developmental principles that link these length scales, allowing us to design medically relevant scaffolds and machines.”

Equipped with the knowledge gleaned from this research, future studies could contribute further to the ability to generate tissues and even organ systems in laboratories. Ultimately, this knowledge could revolutionize transplant medicine, as well as variety of other fields.

New Faculty: Interview With Alex Hughes

Alex new faculty
Alex Hughes, Ph.D.

As noted earlier this week, Penn BE will be bringing in three new faculty members over the coming academic year, starting with Alex Hughes, who will start in the fall semester. Here’s the first of our series of podcasts with the new faculty, to come each Friday this month. Enjoy!

(P.S. Apologies for the rough version of the audio. We are still learning!)

New Faculty Joining Penn Bioengineering

We are thrilled to announce the successful recruitment of three (!) new faculty members to the department. We conducted a national faculty search and could not decide on one — we wanted all three of our finalists!  We are very happy that they chose Penn and think we can provide an amazing environment for their education and research programs.

new faculty hughes
Alex Hughes, Ph.D.

Alex Hughes, Ph.D., will join us in the Spring 2018 semester. Dr. Hughes comes to us from the University of California, San Francisco (UCSF), where he is a postdoctoral fellow. Alex’s research regards determining what he calls the “design rules” underlying how cells assemble into tissues during development, both to better understand these tissues and to engineer methods to build them from scratch

new faculty bugaj
Lukasz Bugaj, Ph.D.

Lukasz Bugaj, Ph.D., will arrive in the Spring 2018 semester. Dr. Bugaj is also coming here from UCSF following a postdoc, and his work is in the field of optogenetics — a scientific process whereby light is used to alter protein conformation, thereby giving one a tool to manipulate cells. In particular, Lukasz’s research has established the ability to induce proteins to cluster ‘on demand’ using light, and he wants to use these and other new technologies he invented to study cell signaling in stem cells and in cancer.

new faculty mitchell
Mike Mitchell, Ph.D.

Mike Mitchell, Ph.D., will also join us in the Spring 2018 semester after finishing his postdoctoral fellowship at MIT in the Langer Lab. In his research, Dr. Mitchell seeks to engineer cells in the bone marrow and blood vessels as a way of gaining control over how and why cancer metastasizes. Mike’s work has already had impressive results in animal models of cancer. His lab will employ tools and concepts from cellular engineering, biomaterials science, and drug delivery to fundamentally understand and therapeutically target complex biological barriers in the body.

In the coming month, we’ll feature podcasts of interview with each of the new faculty members, as well as with Konrad Kording, so be sure to keep an eye out for those.

And to our new faculty, welcome to Penn!