Each year, Penn Engineering’s seniors present their Senior Design projects, a year-long effort that challenges them to test and develop solutions to real-world problems, to their individual departments. The top three projects from each department go on to compete in the annual Senior Design Competition, sponsored by the Engineering Alumni Society, which involves pitching projects to a panel of judges who evaluate their potential in the market.
This year’s panel included 42 judges, 21 in-person and 21 online, who weighed in on 18 projects. Each winning team received a $2,000 prize, generously sponsored by Penn Engineering alumnus Kerry Wisnosky.
This year, Bioengineering teams won two of the four interdepartmental awards.
Technology & Innovation Award
This award recognized the team whose project represents the highest and best use of technology and innovation to leverage engineering principles.
Winner: Team Modulo Prosthetics Department: Bioengineering Team Members: Alisha Agarwal, Michelle Kwon, Gary Lin, Ian Ong, Zachary Spalding Mentor: Michael Hast Instructors: Sevile Mannickarottu, David Meaney, Michael Siedlik Abstract: Modulo Prosthetic is an adjustable, low-cost, thumb prosthetic with integrated haptic feedback that attaches to the metacarpophalangeal (MCP) joint of partial hand amputees and assists in activities of daily living (ADLs).
Leadership Award
This award recognizes the team which most professionally and persuasively presents their group project to incorporate a full analysis of their project’s scope, advantages and challenges, as well as addresses the research’s future potential and prospects for commercialization.
Winner: Team ReiniSpec Department: Bioengineering Team Members: Caitlin Frazee, Caroline Kavanagh, Ifeoluwa Popoola, Alexa Rybicki, Michelle White Mentor: JeongInn Park Instructors: Sevile Mannickarottu, David Meaney, Michael Siedlik Abstract: ReiniSpec is a redesigned speculum to improve the gynecological exam experience, increasing patient comfort with a silicone shell and using motorized arm adjustments to make it easily adjustable for each patient, while also incorporating a camera, lights, and machine learning to aid in better diagnosis by gynecologists.
The 2022 Senior Design Competition Committee was chaired by Lyle Brunhofer, Penn Engineering Alumni Society Board Member and alumnus of Penn Bioengineering (BSE 2014, Master’s 2015).
After a year of hybrid learning, Penn Bioengineering (BE) seniors were excited to return to the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace for Senior Design (BE 495 & 496), a two-semester course in which students work in teams to conceive, design and pitch their capstone projects in bioengineering. This year’s projects include tools for monitoring health, software to improve communication for the healthcare and supply chain industries, and devices to improve patient care for women and underrepresented minorities.
The three winning teams went on to compete in the annual interdepartmental Senior Design Competition sponsored by the Penn Engineering Alumni Society. BE took home two of the four interdepartmental awards: Team Modulo Prosthetics won the “Technology and Innovation Prize,” recognizing the project which best represents the highest and best use of technology and innovation to leverage engineering principles; and Team ReiniSpec won the “Leadership Prize,” which recognizes the team which most professionally and persuasively presents their group project to incorporate a full analysis of their project scope, advantages, and challenges, and addresses the commercialization and future potential of their research.
All BE teams were also required to submit their projects to local and national competitions, and were met with resounding success. “The creativity and accomplishment of this Senior Design class is really unparalleled,” said David Meaney, Solomon R. Pollack Professor in Bioengineering, Senior Associate Dean of Penn Engineering, and instructor for Senior Design. “The number of accolades received by these students, as well as the interest in transforming their ideas into real products for patients, reached a new level that makes us extremely proud.”
Keep reading for a full list of this year’s projects and awards.
Team 1 – MEViD
MEViD (Multichannel Electrochemical Viral Diagnostic) is a modular, low cost device that leverages electrochemistry to rapidly diagnose viral diseases from saliva samples.
Team members: Yuzheng (George) Feng, Daphne Kontogiorgos-Heintz, Carisa Shah, Pranshu Suri, & Rachel Zoneraich
MOD EZ-IO is a low-cost, novel intraosseous drill that uses force and RPM readings to alert the user via an LED when they have breached cortical bone and entered cancellous bone, guiding proper IO placement.
Team members: Gregory Glova, Kaiser Okyan, Patrick Paglia, Rohan Vemu, & Tshepo Yane
Harvest by Grapevine is a user-centric software solution that merges social network communication and supply chain logistics to connect hospitals and suppliers under one unified platform.
Winner of the 2022 President’s Innovation Prize (team member Lukas Yancopoulos and partner William Kohler Danon [SAS 2022] for “Grapevine,” the larger software package of which “Harvest” was a part)
CliniCall helps streamline and centralize communication channels, offering a real-time monitoring device that enables on-site/attending physicians to communicate with on-call physicians through a livestream of patients and data.
Team members: Neepa Gupta, Santoshi Kandula, Sue Yun Lee, & Ronil Synghal
Team 5 – PneuSonus
PneuSonus is a low-cost, user-friendly wearable strap that aids in detecting pediatric pneumonia by using frequency analysis of sound waves transmitted through the lungs to identify specific properties related to fluid presence, a valid indicator specific to pneumonia.
Team members: Iman Hossain, Kelly Lopez, Sophia Mark, Simi Serfati, & Nicole Wojnowski
Team 6 – Chrysalis
Chrysalis is a smart swaddle system comprising an electric swaddle and accompanying iOS application that comforts neonatal abstinence syndrome infants via stochastic resonance and maternal heartbeat vibrational patterns to reduce opioid withdrawal symptoms without pharmacological intervention or constant nurse oversight as well as streamlines the Eat, Sleep, Console documentation process for nurses.
Team members: Julia Dunn, Rachel Gu, Julia Lasater, & Carolyn Zhang
EquitOx is a revolutionized fingertip pulse oximeter designed for EMS that addresses racial inequality in medicine through the use of one-off tongue-calibrated SpO2 measurements.
Team members: Ronak Bhagia, Estelle Burkhardt, Juliette Hooper, Caroline Smith, & Kevin Zhao
Modulo Prosthetic is an adjustable, low-cost, thumb prosthetic with integrated haptic feedback that attaches to the metacarpophalangeal (MCP) joint of partial hand amputees and assists in activities of daily living (ADLs).
Team members: Alisha Agarwal, Michelle Kwon, Gary Lin, Ian Ong, & Zachary Spalding
COR-ASSIST by Cygno Technologies is a low-cost intra-aortic balloon enhancement that directly supports heart function by increasing cardiac output to 2.8L/min, at a much lower cost and bleeding risk than the current Impella cardiac assist device.
Team members: Francesca Cimino, Allen Gan, Shawn Kang, Kristina Khaw, & William Zhang
Pedalytics Footwear is a rechargeable sandal that continuously monitors foot health and prevents diabetic foot ulcer formation by novelly tracking three key metrics indicative of ulceration, temperature, oxygen saturation, and pressure, and sending alerts to patients via the Pedalytics app when metric abnormalities are detected.
Team members: Samantha Brosler, Constantine Constantinidis, Quincy Hendricks, Ananyaa Kumar, & María José Suárez
ReiniSpec is a redesigned speculum to improve the gynecological exam experience, increasing patient comfort with a silicone shell and using motorized arm adjustments to make it easily adjustable for each patient, while also incorporating a camera, lights, and machine learning to aid in better diagnosis by gynecologists.
Team members: Caitlin Frazee, Caroline Kavanagh, Ifeoluwa Popoola, Alexa Rybicki, & Michelle White
The Solomon R. Pollack Award for Excellence in Graduate Bioengineering Research is given annually to the most deserving Bioengineering graduate students who have successfully completed research that is original and recognized as being at the forefront of their field. This year Penn Bioengineering recognizes the outstanding work of two graduate students in Bioengineering: Erin Berlew and Rhea Chitalia.
Erin Berlew is a Ph.D. candidate in the lab of Brian Chow, Associate Professor in Bioengineering. She successfully defended her thesis, titled “Single-component optogenetic tools for cytoskeletal rearrangements,” in December 2021. In her research, she used the BcLOV4 optogenetic platform discovered/developed in the Chow lab to control RhoGTPase signaling. Erin earned a B.S. in Chemistry from Haverford College in 2015 and was an Americorps member with City Year Philadelphia from 2015-2016. “Erin is a world-class bioengineering with an uncommon record of productivity gained through her complementary expertise in molecular, cellular, and computational biology,” says Chow. “She embodies everything wonderful, both academically and culturally, about our graduate program and its distinguished history.” Erin’s hobbies outside the lab include spending time with family, reading mystery novels, enjoying Philadelphia, and crossword puzzles. In the future, she hopes to continue to teach for the BE department (she has already taught ENGR 105 and served as a TA for undergraduate and graduate courses) and to conduct further research at Penn.
Rhea Chitalia is a Ph.D. candidate in Bioengineering and a member of the Computational Biomarker Imaging Group (CBIG), advised by Despina Kontos, Matthew J. Wilson Associate Professor of Research Radiology II in the Perelman School of Medicine. Rhea completed her B.S.E. in Biomedical Engineering at Duke University in 2015. Her doctoral research concerns leveraging machine learning, bioinformatics, and computer vision to develop computational imaging biomarkers for improved precision cancer care. In December 2021 she successfully defended her thesis titled “Computational imaging biomarkers for precision medicine: characterizing intratumor heterogeneity in breast cancer.” “It has been such a privilege to mentor Rhea on her dissertation research,” says Kontos. “Rhea has been a star graduate student. Her work has made fundamental contributions in developing computational methods that will allow us to gain important insight into tumor heterogeneity by utilizing a multi-modality imaging approach.” David Mankoff, Matthew J. Wilson Professor of Research Radiology in the Perelman School of Medicine, served as Rhea’s second thesis advisor. “It was a true pleasure for me to work with Rhea and to Chair her BE Thesis Committee,” Mankoff adds. “Rhea’s Ph.D. thesis and thesis presentation was one of the best I have had the chance to be involved with in my graduate mentoring career.” After graduation, Rhea hopes to further precision medicine initiatives through the use of real world, multi-omic data in translational industry settings. She will be joining Invicro as an Imaging Scientist. In her spare time, Rhea enjoys trying new restaurants, reading, and spending time with friends and family.
University of Pennsylvania Interim President Wendell Pritchett announced the recipients of the 2022 President’s Engagement, Innovation, and Sustainability Prizes. Awarded annually, the Prizes empower Penn students to design and undertake post-graduation projects that make a positive, lasting difference in the world. Each Prize-winning project will receive $100,000, as well as a $50,000 living stipend per team member.
A Penn Bioengineering student is behind one of the prize-winning projects. Grapevine, winner of the President’s Innovation Prize, aims to increase resilience within the healthcare supply chain. BE senior Lukas Achilles Yancopoulos and his partner William Kohler Danon created Grapevine, and Lukas went on to adapt the Grapevine software into his award-winning senior design project Harvest by Grapevine along with team members Nicole Bedanova, Kerry Blatney, Blake Grimes, Brenner Maull.
“This year’s Prize recipients have selflessly dedicated themselves to improving environmental, health, and educational outcomes for others,” said Pritchett. “From empowering young people through free creative writing education to building robotics that minimize fish waste to reducing microfiber pollution in the ocean, these outstanding and inspiring projects exemplify the vision and passion of our Penn students, who are deeply committed to making a positive difference in the world.”
William Kohler Danon and Lukas Achilles Yancopoulos for Grapevine: Danon, a history major in the College of Arts and Sciences from Miami, and Yancopoulos, an environmental studies major in the College and a bioengineering major in the School of Engineering and Applied Science from Yorktown Heights, New York, will work to increase resilience across the health care supply chain, with a particular focus on small-to-medium businesses. Grapevine builds upon Danon and Yancopoulos’sinspiring work with Pandemic Relief Supply, a venture that delivered $20 million of health care supplies to frontline workers at the height of the COVID-19 pandemic. They are mentored by David F. Meaney, the Solomon R. Pollack Professor of Bioengineering and senior associate dean for Penn Engineering.
Read about all the winning projects at Penn Today.
Congratulations to the Bioengineering undergraduate student recipients of awards from the School of School of Engineering and Applied Science for the 2021-2022 academic year. These awards are given annually by the school and the department in recognition of outstanding scholarship and service. Read the full list of Bioengineering undergraduate award winners below.
The Wolf-Hallac Award: Neepa Gupta (BAS 2022). This award was established in October 2000 to recognize the graduating female senior from across Penn Engineering’s departments who is seen as a role model, has achieved a high GPA (in the top 10% of their class), and who has demonstrated a commitment to school and/or community.
The Hugo Otto Wolf Memorial Prize: Ian Ong (BSE 2022) and Iman Hossian (BSE 2022). This prize is awarded to one or more members of each department’s senior class, distinguishing students who meet with great approval of the professors at large through “thoroughness and originality” in their work.
The Herman P. Schwan Award: George Feng (BSE and Jerome Fisher Program in Management & Technology 2022). This department award honors a graduating senior who demonstrates the “highest standards of scholarship and academic achievement.”
Exceptional Service Awards recognize students for their outstanding service to the University and their larger communities: Estelle Burkhardt (BSE 2022), Khristina Khaw (BSE 2022), Zachary Spalding (BSE 2022), and Nicole Wojnowski (BSE 2022).
The Student Leadership Award: Kerry Blatney (BSE 2022). This award is given annually to a student in Bioengineering who has demonstrated, through a combination of academic performance, service, leadership, and personal qualities, that they will be a credit to the Department, the School, and the University.
The Engineering Alumni Society E. Stuart Eichert, Jr. Student Award: Gloria Lee (BSE 2023). This award is given annually by the Engineering Alumni Society to a Penn Engineering third-year student who best exemplifies the characteristics of selfless service to the University and the community.
Additionally, the Bioengineering Department also presents a single lab group with the Albert Giandomenico Award which reflects their “teamwork, leadership, creativity, and knowledge applied to discovery-based learning in the laboratory.” This year’s group consists of Caitlin Frazee (BSE 2022), Ifeoluwa Poppola (BSE 2022), Alexa Rybicki (BSE 2022), and Michelle White (2022).
Three Bioengineering Senior Design teams were chosen for recognition in the Bioengineering Senior Design Competition:
Team Chrysalis: Team members Julia Dunn, Rachel Gu, Julia Lasater, & Carolyn Zhang. Chrysalis is a smart swaddle system comprising an electric swaddle and accompanying iOS application that comforts neonatal abstinence syndrome infants via stochastic resonance and maternal heartbeat vibrational patterns to reduce opioid withdrawal symptoms without pharmacological intervention or constant nurse oversight as well as streamlines the Eat, Sleep, Console documentation process for nurses.
Team Modulo Prosthetics: Team members Alisha Agarwal, Michelle Kwon, Gary Lin, Ian Ong, & Zachary Spalding. Modulo Prosthetic is an adjustable, low-cost, thumb prosthetic with integrated haptic feedback that attaches to the metacarpophalangeal (MCP) joint of partial hand amputees and assists in activities of daily living (ADLs).
Team ReiniSpec: Team members Caitlin Frazee, Caroline Kavanagh, Ifeoluwa Popoola, Alexa Rybicki, & Michelle White. ReiniSpec is a redesigned speculum to improve the gynecological exam experience, increasing patient comfort with a silicone shell and using motorized arm adjustments to make it easily adjustable for each patient, while also incorporating a camera, lights, and machine learning to aid in better diagnosis by gynecologists.
Savan Patel, a junior studying Bioengineering and Finance in the Jerome Fisher Management and Technology dual degree program, was selected as the recipient of the 2022 C. William Hall Scholarship from the Society for Biomaterials. The C. William Hall Scholarship is named in honor of the Society for Biomaterials’ first president and is awarded annually “to a junior or senior undergraduate pursuing a bachelor’s degree in bioengineering or a related discipline focusing on biomaterials.” As this year’s recipient, Savan will receive complimentary membership to the Society and will have expenses paid to the Society’s annual meeting being held April 27-30, 2022 in Baltimore, Maryland.
Savan is currently a member of the lab of Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering. Savan’s research interests lie in the interface of drug delivery and immunoengineering with a particular focus on T cell delivery. His current project involves the use of modified cholesterol molecules to improve the delivery of nucleic acids (i.e., mRNA) to cell populations using lipid nanoparticles.
Lipid nanoparticles (LNPs) are a clinically proven delivery platform for nucleic acid therapeutics. One drawback of these particles is their high cellular recycling rate. Savan and the members of the Mitchell lab are working to reduce this recycling by leveraging cellular processes and incorporating modified molecules into our lipid nanoparticle formulations. The focus of Savan’s project is on modifying cholesterol, a molecule that is important to both our LNP formulations and cell membranes. The goal is to generate a more potent delivery platform to improve current therapeutics.
Following graduation, Savan intends to pursue a Ph.D. in Bioengineering.
The Y-Prize, a student startup competition based on technologies developed at Penn Engineering, is hosted by the Wharton School’s Mack Institute for Innovation Management, Penn Wharton Entrepreneurship and the Penn Center for Innovation each year. The team with the best pitch takes home $10,000 in investment funding.
The team utilized the steerable needle technology developed by Mark Yim, Asa Whitney Professor of Mechanical Engineering and Applied Mechanics, and colleagues. Yim’s device is a flexible needle that can be guided through soft materials with simple handheld controls, enabling users to pinpoint hard-to-reach areas that might otherwise require more complicated tools or robotic assistance.
Five University of Pennsylvania undergraduates have received 2022 Goldwater Scholarships, including Laila Barakat Norford, a third year Bioengineering major from Wayne, Pennsylvania. Goldwater Scholarships are awarded to sophomores or juniors planning research careers in mathematics, the natural sciences, or engineering.
Penn has produced 23 Goldwater Scholars in the past seven years and a total of 55 since Congress established the scholarship in 1986.
Laila Barakat Norford is majoring in bioengineering with minors in computer science and bioethics in Penn Engineering. As a Rachleff Scholar, Norford has been engaged in systems biology research since her first year. Her current research uses machine learning to predict cell types in intestinal organoids from live-cell images, enabling the mechanisms of development and disease to be characterized in detail. At Penn, she is an Orientation Peer Advisor, a volunteer with Advancing Women in Engineering and the Penn Society of Women Engineers, and a teaching assistant for introductory computer science. She is secretary of the Penn Band, plays the clarinet, and is a member of the Band’s Fanfare Honor Society for service and leadership. Norford registers voters with Penn Leads the Vote and canvasses for state government candidates. She is also involved in Penn’s LGBTQ+ community as a member of PennAces. Norford plans to pursue a Ph.D. in computational biology, aspiring to build computational tools to address understudied diseases and health disparities.
Team Ossum is comprosed of Ananya Dewan (Vagelos LSM), Hoang Le (Vagelos LSM), Shiva Teerdhala (Vagelos LSM), Karan Shah (SEAS), and Savan Patel (M&T). Karan and Savan are both bioengineering majors. Their winning pitch to a panel of expert judges proposed “a commercial application to remove obstacles to safe cerclage use in orthopedic fracture fixation with Penn’s steerable needle technology.” Initial work for Ossum’s device, OsPass, was done in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching lab and interdisciplinary makerspace of the Department of Bioengineering which is open to any Penn students campus-wide.
Team Steed, who proposed “an application to make breast biopsies less painful and damaging,” placed among the competition finalists and included bioengineering majors Farhaanah Mohideen, Ananyaa Kumar, and Kristina Khaw.
From COVID vaccines to cancer immunotherapies to the potential for correcting developmental disorders in utero, mRNA-based approaches are a promising tool in the fight against a wide range of diseases. These treatments all depend on providing a patient’s cells with genetic instructions for custom proteins and other small molecules, meaning that getting those instructions inside the target cells is of critical importance.
The current delivery method of choice uses lipid nanoparticles (LNPs). Thanks to surfaces customized with binding and signaling molecules, they encapsulate mRNA sequences and smuggle them through the cell membrane. But with a practically unlimited number of variables in the makeup of those surfaces and molecules, figuring out how to design the most effective LNP is a fundamental challenge.
Now, in a study featured on the cover of the journal Nano Letters, researchers from the University of Pennsylvania’s School of Engineering and Applied Science and Perelman School of Medicine have now shown how to computationally optimize the design of these delivery vehicles.
Using an established methodology for comparing a wide range of variables known as “orthogonal design of experiments,” the researchers simultaneously tested 256 candidate LNPs. They found the frontrunner was three times better at delivering mRNA sequences into T cells than the current standard LNP formulation for mRNA delivery.
The study was led by Michael Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering in Penn’s School of Engineering and Applied Science, and Margaret Billingsley, a graduate student in his lab.