Penn Engineering Announces Four New Scholarly Chairs

Penn Engineering is pleased to announce the names of the recipients of four scholarly chairs: Drs. Danielle Bassett, Russell Composto, Boon Thau Loo and Mark Yim. These are all well-deserved honors and we celebrate the privilege of having each of these scholars among us. Two of the recipients, Drs. Bassett and Composto, are members of the Bioengineering Department.


Danielle Bassett has been named the J. Peter Skirkanich Professor of Bioengineering.

Danielle Bassett, Ph.D.

Dr. Bassett is a Professor in the department of Bioengineering at the School of Engineering and Applied Science. She holds a Ph.D. in Physics from the University of Cambridge and completed her postdoctoral training at the University of California, Santa Barbara, before joining Penn in 2013.

Dr. Bassett has received numerous awards for her research, including an Alfred P Sloan Research Fellowship, a MacArthur Fellowship, an Office of Naval Research Young Investigator Award, a National Science Foundation CAREER Award and, most recently, an Erdos-Renyi Prize in Network Science to name but a few. She has authored over 190 peer-reviewed publications as well as numerous book chapters and teaching materials. She is the founding director of the Penn Network Visualization Program, a combined undergraduate art internship and K-12 outreach program bridging network science and the visual arts.

Dr. Bassett’s research is in the area of complex systems and network science, with applications to biological, physical and social networks. She examines dynamic changes in network architecture, the interaction between topological properties of networks, and the influence of network topology on signal propagation and system function. To learn more about Dr. Bassett and her research, please visit her faculty profile.

The J. Peter Skirkanich Professorship was established to honor J. Peter “Pete” Skirkanich, an alumnus, trustee and member of the School of Engineering and Applied Science Board of Overseers who also served as co-chair of Penn Engineering’s “Making History through Innovation” capital campaign and was a member of the University’s “Making History” steering committee. His generous support for Penn Engineering paved the way for Skirkanich Hall.


Russell Composto has been named the Howell Family Faculty Fellow in the School of Engineering and Applied Science.

Russell J. Composto, Ph.D.

Dr. Composto is a Professor in the department of Materials Science and Engineering at the School of Engineering and Applied Science with secondary appointments in Bioengineering and Chemical and Biomolecular Engineering. He joined Penn in 1990 after an appointment as a Research Scientist at Brookhaven National Laboratory and a postdoctoral fellowship at the University of Massachusetts. He is an alumnus of Cornell University, where he received his doctoral degree in 1987.

Dr. Composto is a member of a number of centers and institutes and is the director of Research and Education in Active Coatings Technologies (REACT) for human habitat, a Partnerships for International Research and Education (PIRE) project funded by the National Science Foundation (NSF) and the University of Pennsylvania. Dr. Composto is a previous recipient of the Provost’s Award for Distinguished PhD Teaching and Mentoring. He also serves at the Associate Dean for Undergraduate Education at Penn Engineering.

Dr. Composto’s research is in the area of polymer science and biomolecular engineering. His interests extend to polymer surfaces and interfaces, adhesion and diffusion, and nanocomposite polymer blend and copolymer films. His biomaterials work centers around manipulating the surface of polymers to elicit control over protein adsorption, as well as cell adhesion, orientation, and function, and he has an active research program at the interface of polymer science and biomolecular engineering, which combines block copolymer self-assemble as a basis for orienting stiff biological molecules. To learn more about Dr. Composto and his research, please visit his faculty profile.

The Howell Family Faculty Fellow was established to provide financial support to a faculty member in the School of Engineering and Applied Science. This faculty fellow helped launch the dean’s strategic goal to increase the School’s number of named, endowed faculty positions.

Read the full article on the Penn Engineering blog.

Week in BioE (August 16, 2019)

by Sophie Burkholder

Electrode Arrays and Star Wars Help to Inspire a New Prosthetic Arm

Brain-controlled prosthetic arm, Wikimedia commons

After nearly fifteen years of work, a new high-tech prosthetic arm from researchers at the University of Utah allows hand amputees to pluck grapes, pick up eggs without breaking them, and even put on their wedding rings. Named after Luke Skywalker’s robotic hand in the Star Wars saga, the LUKE Arm includes sensors that better mimic the way the human body sends information to the brain, allowing users to distinguish between soft and hard surfaces and to perform more complicated tasks. The arm relies heavily on an electrode array invented by University of Utah biomedical engineering professor Richard A. Normann, Ph.D., which is a bundle of microelectrodes that enable a computer to read signals from connected nerves in the user’s forearm.

But the biggest innovation in the use of these electrode arrays for the LUKE Arm is in the way they allow the prosthetic to mimic the sense of feeling on the surface of an object that indicates how much pressure should be applied when handling it. Gregory Clark, Ph.D., an associate professor of biomedical engineering at the University of Utah and the leader of the LUKE Arm project, says the key to improving these functions in the prosthetic was by more closely mimicking the path that this information takes to the brain, as opposed to merely what comprises that sensory information. In the future, Clark hopes to improve upon the LUKE Arm by including more inputs, like one for temperature data, and on making them more portable by eliminating the device’s need for computer connection.

Philly Voice Recognizes the Cremins Lab’s Innovations in Light-Activated Gene-Folding

While technological advancements over the past few decades have opened doors to understanding the topological structures of DNA, we still have far more to learn about how these structures impact and contribute to genome function. But here at Penn, the Cremins Laboratory in 3D Epigenomes and Systems Neurobiology hopes to fix that. Led by Jennifer E. Phillips-Cremins, Ph.D., members of the lab use light-activated dynamic looping (LADL) to better understand the way that genome topological properties and folding can affect protein translation. Cremins and her lab use this technique to force specific genome folds to interact with each other, and create temporary DNA loops that can then be bound together in the presence of blue light for certain proteins in the Arabidopsis plant. Using the data from these tests, researchers can better understand the genome structure-function relationships, and hopefully open the door to new treatments for diseases in which expression or mis-expression of certain genes is the cause.

Artificial Cells Can Deliver Molecules Better than the Real Thing

From pills to vaccines, ways to deliver drugs into the body have been constantly evolving since the early days of medicine.

Now, a new study from an interdisciplinary team led by researchers at the University of Pennsylvania provides a new platform for how drugs could be delivered to their targets in the future. Their work was published in the Proceedings of the National Academy of Sciences.

The research focuses on a dendrimersome, a compartment with a lamellar structure and size that mimic a living cell. It can be thought of as the shipping box of the cellular world that carries an assortment of molecules as cargo.

The scientists found that these dendrimersomes, which have a multilayered, onion-like structure, were able to “carry” high concentrations of molecules that don’t like water, which is common in pharmaceutical drugs. They were also able to carry these molecules more efficiently than other commercially available vessels. Additionally, the building block of the cell-like compartment, a janus dendrimer, is classified as an amphiphile, meaning it contains molecules that don’t like water and also molecules that are soluble in water, like lipids, that make up natural membranes.

“This is a different amphiphile that makes really cool self-assembled onions into which we were able to load a bunch of molecular cargos,” says co-author Matthew Good.

Read the rest of the story on Penn Today.

A Warm Evening Bath Could Improve Sleep Quality

In a recent review of over 5,000 sleep studies, biomedical engineering researchers at the University of Texas at Austin found a connection between water-based passive body heating and sleep onset latency, efficiency, and quality. Using meta-analytical tools to compare all of the studies and patient data, lead author and Ph.D. candidate Shahab Haghayegh and his team found that a warm bath in the temperature range of 104-109 degrees Fahrenheit taken 1-2 hours before bed has the ability to improve all three considered sleep categories. This makes sense considering that our body’s Circadian rhythms govern both our sleep cycles and temperature, bringing us to a higher temperature during the day and a lower one at night during sleep. In fact, this lowering of body temperature before sleep is what helps to trigger the onset of sleep, so taking a warm bath and allowing your body to cool down from it before going to sleep enhances the body’s own efforts of naturally cooling down before we go to bed. With this new and comprehensive review, those who suffer from poor sleep quality may soon find solace in temperature regulation therapy systems.

People & Places

With the recent 50th anniversary of the first moon landing by Americans Neil Armstrong, Buzz Aldrin, and Michael Collins in 1969, ABC News looked back at one of the women involved in the project. Judy Sullivan was a biomedical engineer at the time of the project, and served as the lead engineer of the biomedical system for Apollo 11. In this role, she led studies on the astronauts’ breathing rates and sensor capabilities for the devices being sent into space to help the astronauts monitor their health. For the Apollo 11 mission and a lot of Sullivan’s early work at NASA, she worked on teams of all men, as women were often encouraged to become teachers, secretaries, or homemakers over other professions. Today, Sullivan says she’s thrilled that women have more career options to choose from, and wants to continue seeing more women getting involved in math and science.

We would like to congratulate Sanjay Kumar, M.D., Ph.D., on his appointment as the new Department Chair of Bioengineering at the University of California, Berkeley. Since joining the faculty in 2005, Kumar has received several prestigious awards including the NSF Career Award, the NIH Director’s New Innovator Award, the Presidential Early Career Award for Scientists and Engineers, and the Berkeley student-voted Outstanding Teacher Award.

 

Penn Bioengineering Faculty Member Paul Ducheyne Receives the European Society for Biomaterials’ International Award

Ducheyne
Paul Ducheyne, Ph.D.

by Sophie Burkholder

We would like to congratulate Paul Ducheyne, Ph.D., a Professor in the Bioengineering Department and a Professor of Orthopaedic Surgery Research at Penn, on being selected for the International Award by the European Society for Biomaterials (ESB). The International Award is one of the ESB’s highest honors, recognizing scientists who have spent the majority of their careers outside of Europe. They are internationally recognized, have a high scientific profile, and have made  major contributions to the field of biomaterials. Those nominated for the award typically also have had strong collaborations with the scientific community in Europe throughout their careers.

Beyond being a professor at Penn, Ducheyne is also the founder of XeroThera, a spin-out from Penn that develops novel concepts for tissue engineering and drug delivery based on his group’s twenty years of fundamental studies of sol gel-processed, nanoporous, oxide-based materials. XeroThera’s first product formulations focus on prophylaxis and treatment of surgical infections. A pipeline is being developed building from his group’s breakthrough data   that demonstrate the utility of sol-gel synthesized silica-based nanoporous materials for therapeutic use. These materials may well represent a next generation of agents for delivery of drugs, including antibiotics, analgesics, and osteogenic and anti-inflammatory molecules.

In being selected for the International Award, Ducheyne joins only five previous recipients of it so far, a group of scientists that represents those at the top of the field in biomaterials worldwide. Ducheyne will give a presentation and award lecture for the ESB at its next annual meeting this September in Dresden, Germany. Read more about the ESB’s awards here and see the full list of 2019 awardees here.

Six Penn Engineers Receive Tenure

Brian Chow, David Issadore, Dongeun (Dan) Huh, Linh Thi Xuan Phan, Amish Patel and Aleksandra Vojvodic

The School of Engineering and Applied Science has granted tenure to six faculty members, including three from the Department of Bioengineering.

Tenured faculty at Penn Engineering demonstrate teaching excellence and international leadership in their fields of study and research collaborations.

Brian Chow
Associate Professor in Bioengineering
Chow’s research focuses on the discovery and engineering of photoreceptors and sensory proteins for manipulating and monitoring the physiology of genetically targeted cells, and the application of these tools to reveal principles of cellular dynamics. His work has advanced the rational design of light activated proteins and the use of optogenetic reagents to study cell signaling.

David Issadore
Associate Professor in Bioengineering
Issadore’s research combines microelectronics, microfluidics, and nanomaterials to create miniaturized platforms for the diagnosis of disease. His work has the potential to radically change the way we diagnose and treat diseases by bringing the technologies out of the lab and directly to the point of care.

Dongeun (Dan) Huh
Associate Professor in Bioengineering
Huh’s research aims to develop innovative bioengineering tools and technologies using biologically inspired design principles and micro- and nano-scale engineering techniques to create systems that mimic the structure and function of human physiological systems.

Linh Thi Xuan Phan
Associate Professor in Computer and Information Science
Phan’s work focuses on making cyber-physical systems (CPS) safer, faster, and more secure, both by strengthening the theoretical foundations and by developing practical solutions. Her recent projects include a cloud platform with real-time capabilities, a new diagnosis technique for timing-related faults, and new ways to defend CPS against attacks from insiders and/or external attackers.

Amish Patel
Associate Professor in Chemical and Biomolecular Engineering
Patel’s research strives to achieve a molecular-level understanding of solvation and transport in aqueous and polymeric systems, with applications ranging from the prediction of protein interactions to the design of advanced materials for water purification and energy storage. His group combines principles of statistical mechanics and liquid state theory with state-of-the-art molecular modeling and atomistic simulation techniques to study these biological, nanoscopic and polymeric systems.

Aleksandra Vojvodic
Associate Professor in Chemical and Biomolecular Engineering
Vojvodic’s research focuses on theory and computation-driven materials design. Her lab uses computational frameworks to obtain fundamental understanding of surface and interface properties of complex materials that can be used to develop theoretical models for chemical transformations and energy conversion. These models have been used to predict new catalyst materials for several chemical reactions which have been experimentally synthesized and tested, validating the desired properties of the computationally predicted catalyst material.

Originally posted on the Penn Engineering Medium blog.

Brian Chow, Dan Huh, and David Issadore Promoted to Tenured Positions as Associate Professors in Penn Bioengineering

by Sophie Burkholder

We would like to congratulate Penn Bioengineering faculty members Brian Chow, Ph.D., Dongeun (Dan) Huh, Ph.D., and David Issadore, Ph.D., on all of their recent promotions to tenured positions as Associate Professors. Both Chow and Issadore taught the second half of the foundational course in the Penn Bioengineering undergraduate curriculum, Bioengineering Modeling, Analysis, and Design Laboratory, in which students form lab groups to complete modules in microfluidics, synthetic biology, bioelectrical signal analysis, and bioanalytical spectroscopy.

Chow R01
Brian Chow, Ph.D.

Outside of the classroom, Chow’s research focuses on the creation of dynamic input and output interfaces for cells through the use of optogenetics, synthetic biology, genomics, and device engineering. The Chow lab’s current projects include the exploration of functional diversity of photoreception, engineering optically active genetically encoded tools, and their applications in neuroscience and mammalian synthetic biology. His research is supported by the NIH and he is the recipient of a 2017 NSF CAREER Award. Chow also supports undergraduate innovations in research by hosting the annual Penn team for the International Genetically Engineered Machine (iGEM) competition, a program which he helped to create during his time as a graduate student at MIT. One group of Bioengineering students under Chow’s mentorship used the iGEM project as a springboard to create an accessible, open-source plate reader.

David Issadore, Ph.D.

The Issadore lab at Penn focuses on the use of microelectronics and microfluidics for medical diagnostics. In projects that combine elements of bioengineering, electrical engineering, chemical engineering, and applied physics, Issadore and his team use an interdisciplinary approach to create miniaturized low-cost platforms for disease diagnosis. His company Chip Diagnostics received the JPOD @ Philadelphia QuickFire Challenge Award last month. Earlier this year, Issadore taught the Penn Engineering course Appropriate Point of Care Diagnostics (APOC), which culminated in a service trip to Ghana (read blog posts written by participating students here). This fall, he will take over the core Bioengineering undergraduate course in Bioengineering Signals and Systems, which focuses on applications in ECG signaling, cochlear implants, and biomedical imaging.

organ-on-a-chip
Dan Huh, Ph.D.

Dr. Huh is the principal investigator of the BIOLines Lab at Penn, which is best known for its work on bioinspired engineering systems that Huh calls “organs-on-a-chip.” Using design and engineering principles based on microfluidics and biomimicry, the Huh lab creates microengineered systems that can reconstitute the structural and functional complexity of healthy and diseased human physiological systems in ways not possible using traditional cell culture techniques. His research has been featured in TEDx, and he has won several prestigious honors and awards including the Bernard Langer Distinguished Lectureship, Lush Prize, the McPherson Distinguished Lectureship, CRI Technology Impact Award, John J. Ryan Medal, Design of the Year Award and Best Product of the Year Award from London Design Museum, NIH Director’s New Innovator Award, and Analytical Chemistry Young Innovator Award. This fall, Huh will teach a graduate level course in biomicrofluidics that will cover the use of microfluidics for biomedical application.

Ravi Radhakrishnan Named Director of the Penn Institute for Computational Science

Ravi Radhakrishnan, Ph.D.

Ravi Radhakrishnan, professor in the departments of Bioengineering and Chemical and Biomolecular Engineering, has been named the new Director of the Penn Institute for Computational Science (PICS).

PICS is a cross-disciplinary institute for the advancement, integration, and support of Penn research via the tools and techniques of high-performance computing. It promotes research through a regular seminar series, an annual conference, by hosting joint research projects and through researcher and student training. PICS also enables computational science research by providing an ongoing series of short technical “how to” workshops or bootcamps for Penn researchers and graduate students.

Radhakrishnan’s research interests lie at the interface of chemical physics and molecular biology. He graduated from the Indian Institute of Technology in 1995 and earned his PhD from Cornell University in 2001. He is a member of the Penn Center for Molecular Discovery and the Center for Engineering Cells and Regeneration.

Originally posted on the Penn Engineering Medium blog.

Week in BioE (July 26, 2019)

by Sophie Burkholder

New 3D Tumor Models Could Improve Cancer Treatment

New ways of testing cancer treatments may now be possible thanks to researchers at the University of Akron who developed three-dimensional tumor models of triple-negative breast cancer. Led by Dr. Hossein Tavana, Ph. D., an associate professor of biomedical engineering at the university, the Tissue Engineering Microtechnologies Lab recently received a $1.13 million grant from the prestigious National Cancer Institute (NCI) of the National Institute of Health (NIH) to continue improving these tumor models. Tumors are difficult to fully replicate in vitro, as they are comprised of cancerous cells, connective tissue, and matrix proteins, among several other components. With this new grant, Tavana sees creating a high-throughput system that uses many identical copies of the tumor model for drug testing and better understanding of the way tumors operate. This high-throughput method would allow Tavana and his lab to isolate and test several different approaches at once, which they hope will help change the way tumors are studied and treated everywhere.

Noise-Induced Hearing Loss Poses Greater Threat to Neural Processing

Even though we all know we probably shouldn’t listen to music at high volumes, most of us typically do it anyway. But researchers at Purdue University recently found that noise-induced hearing loss could cause significant changes in neural processing of more complex sound inputs. Led by Kenneth Henry, Ph.D., an assistant professor of otolaryngology at the University of Rochester Medical Center, and Michael Heinz, Ph.D., a professor of biomedical engineering at Purdue University, the study shows that when compared with age-related hearing loss, noise-induced hearing loss will result in a greater decrease in hearing perception even when the two kinds of hearing loss appear to be of the same degree on an audiogram. This is because noise-induced hearing loss occurs because of physical trauma to the ear, rather than the long-term electrochemical degradation of some components that come happen with age. The evidence of this research is yet another reason why we should be more careful about exposing our ears to louder volumes, as they pose a greater risk of serious damage.

Increasing the Patient Populations for Research in Cartilage Therapy and Regenration

Despite the great progress in research of knee cartilage therapy and regeneration, there are still issues with the patient populations that most studies consider. Researchers often want to test new methods on patients that have the greatest chance of injury recovery without complications – often referred to as “green knees” – but this leaves out those patient populations who suffer from conditions or defects that have the potential to cause complications – often referred to as “red knees.” In a new paper published in Regenerative Medicine, the Mary Black Ralston Professor for Education and Research in Orthopaedic Surgery and secondary faculty in the Department of Bioengineering at Penn, Robert Mauck, Ph.D., discusses some cartilage therapies that may be suitable for red knee populations.

Working with James Carey, M.D., the Director of the Penn Center for Cartilage Repair and Osteochondritis, Mauck and his research team realized that even those with common knee cartilage conditions such as the presence of lesions or osteoarthritis were liable to be excluded from most regeneration studies. In discussing alternatives methods and structures of studying cartilage repair and regeneration, Mauck and Carey hope that future therapies will be applicable to a wider range of patient populations, and that there will soon be more options beyond full joint replacement for those with red knee conditions.

Plant-Like Superhydrophobicity Has Applications in Biomedical Engineering

Researchers in the Department of Biomedical Engineering at Texas A&M University recently found ways of incorporating the superhydrophobic properties of some plant leaves into biomedical applications through what they’re calling a “lotus effect.” The Gaharwar Lab, led by principal investigator and assistant professor of biomedical engineering Akhilesh Gaharwar, Ph.D., developed an assembly of two-dimensional atomic layers that they describe as a “nanoflower” to help control surface wetting in a biomedical setting. A recent paper published in Chemical Communications describes Gaharwar and his team’s work as expanding the use of superhydrophobic surface properties in biomedical devices by demonstrating the important role that atomic vacancies play in the wetting characteristic. While Gaharwar hopes to research the impact that controlling superhydrophobicity could have in stem cell applications, his work already allows for innovations in self-cleaning and surface properties of devices involving labs-on-a-chip and biosensing.

People and Places

Nader Engheta, H. Nedwill Ramsey Professor in Electrical and Systems Engineering, Bioengineering and Materials Science and Engineering, has been inducted into the Canadian Academy of Engineering (CAE) as an International Fellow. The CAE comprises many of Canada’s most accomplished engineers and Engheta was among the five international fellows that were inducted this year.

The Academy’s President Eddy Isaacs remarked: “Over our past 32 years, Fellows of Academy have provided insights in the fields of education, infrastructure, and innovation, and we are expecting the new Fellows to expand upon these contributions to public policy considerably.”

Read the full story on Penn Engineering’s Medium Blog. 

We would like to congratulate Anthony Lowman, Ph.D., on his appointment as the Provost and Senior Vice President for Academic Affairs at Rowan University. Formerly the Dean of Rowan’s College of Engineering, Lowman helped the college double in size, and helped foster a stronger research community. Lowman also helped to launch a Ph.D. program for the school, and added two new departments of Biomedical Engineering and Experiential Engineering Education in his tenure as the dean. Widely recognized for his research on hydrogels and drug delivery, Lowman was also formerly a professor of bioengineering at Temple University and Drexel University.

Lastly, we would like to congratulate Daniel Lemons, Ph.D., on his appointment as the Interim President of Lehman College of the City University of New York. Lemons, a professor in the Department of Biology at City College, specializes in cardiovascular and comparative physiology, and was also one of the original faculty members of the New York Center for Biomedical Engineering. With prior research funded by both the National Institute of Health (NIH) and the National Science Foundation (NSF), Lemons also holds patents in biomechanics teaching models and mechanical heart simulators.

 

Congratulations to Danielle Bassett and Arjun Raj on Their Promotions to Full Professors

We would like to congratulate Penn Bioengineering faculty members Arjun Raj, Ph.D., and Danielle Bassett, Ph.D., on their promotions from associate to full professors.

Arjun Raj, Ph.D.

The Raj lab studies how biological processes work at the level of individual cells. Their work combines quantitative tools from genomics, imaging, biology, math, and computer science to develop models for how individual cells function, and in particular, how these individual cells can behave differently from each other. One major interest is in cancer, in which the lab is studying how individual cells can drive resistance to anti-cancer drugs. He and his lab also have a regularly updated blog discussing general topics related to scientific academia.

Danielle Bassett, Ph.D.

The Bassett lab takes an in-depth look at the use of network science and complex systems theory to study computational neuroscience in projects that involve the architecture of knowledge networks, the controllability of brain networks, and the dynamic networks in neuroscience. This fall, she will teach an elective course in network neuroscience open to graduate and undergraduate students that covers the use of network science in understanding overall brain circuitry. Bassett was recently profiled in Science Magazine.

Michael Mitchell Elected Society for Biomaterials Drug Delivery Chair

by Sophie Burkholder

 

Michael Mitchell, Ph.D., Skirkanich Assistant Professor of Innovation in the Department of Bioengineering at the University of Pennsylvania, was elected Chair of the Drug Delivery Special Interest Group for the Society for Biomaterials at the 2019 Annual Meeting in Seattle, Washington. According to the Society for Biomaterials website:

The Drug Delivery Special Interest Group will deal with the science and technology of controlled release of active agents from delivery systems. Controlled drug release is achieved by the use of diffusion, chemical reactions, dissolutions or osmosis, used either singly or in combination. While the vast majority of such delivery devices are based on polymers, controlled release can also be achieved by the use of mechanical pumps. In a broader sense, controlled release also involves control over the site of action of the active agent, using the active agent using pro-drugs, targetable water soluble polymers or various microparticulate systems. Relevant aspects of toxicology, bioavailability, pharmacokinetics, and biocompatibility are also included.

The Society for Biomaterials is an interdisciplinary organization comprised of academic, industry, health care, and governmental professionals dedicated to promoting advancements in all aspects of biomaterial science and engineering, education, and professional standards to enhance human health and quality of life. The Society for Biomaterials was established in 1974, and is the oldest scientific organization in the field of biomaterials.

Michael Mitchell, Ph.D.

Mitchell joined the Department of Bioengineering at Penn in 2018 as Skirkanich Assistant Professor of Innovation. Previously, he was an NIH Ruth L. Kirschstein Postdoctoral Fellow with Institute Professor Robert Langer at the Koch Institute for Integrative Cancer Research at MIT. His research interests include biomaterials, drug delivery, and cellular and molecular bioengineering for applications in cancer research, immunotherapy, and gene therapy. Since joining Penn in 2018, Mitchell has received the NIH Director’s New Innovator Award, the Burroughs Wellcome Fund Career Award at the Scientific Interface, a Rising Star Award from the Biomedical Engineering Society, and the T. Nagai Award from the Controlled Release Society.

Mitchell’s new role as the Chair of the SFB’s Drug Delivery Special Interest Group will allow him to lead conversations across academia on the future of drug delivery as it relates to biomaterials. With his fellow officers, Mitchell will help spread knowledge about the field of controlled drug release by hosting research forums, helping to publish news and activities of the SFB in Biomaterials Forum, and foster connections and mentorship among members of his and other Special Interest Groups. We can’t wait to see where Mitchell’s leadership will help take the community of research on areas like toxicology, pharmacokinetics, and biocompatibility next!

Week in BioE (July 12, 2019)

by Sophie Burkholder

DNA Microscopy Gives a Better Look at Cell and Tissue Organization

A new technique that researchers from the Broad Institute of MIT and Harvard University are calling DNA microscopy could help map cells for better understanding of genetic and molecular complexities. Joshua Weinstein, Ph.D., a postdoctoral associate at the Broad Institute, who is also an alumnus of Penn’s Physics and Biophysics department and former student in Penn Bioengineering Professor Ravi Radhakrishnan’s lab, is the first author of this paper on optics-free imaging published in Cell.

The primary goal of the study was to find a way of improving analysis of the spatial organization of cells and tissues in terms of their molecules like DNA and RNA. The DNA microscopy method that Weinstein and his team designed involves first tagging DNA, and allowing the DNA to replicate with those tags, which eventually creates a cloud of sorts that diffuses throughout the cell. The DNA tags subsequent interactions with molecules throughout the cell allowed Weinstein and his team to calculate the locations of those molecules within the cell using basic lab equipment. While the researchers on this project focused their application of DNA microscopy on tracking human cancer cells through RNA tags, this new method opens the door to future study of any condition in which the organization of cells is important.

Read more on Weinstein’s research in a recent New York Times profile piece.

Penn Engineers Demonstrate Superstrong, Reversible Adhesive that Works like Snail Slime

A snail’s epiphragm. (Photo: Beocheck)

If you’ve ever pressed a picture-hanging strip onto the wall only to realize it’s slightly off-center, you know the disappointment behind adhesion as we typically experience it: it may be strong, but it’s mostly irreversible. While you can un-stick the used strip from the wall, you can’t turn its stickiness back on to adjust its placement; you have to start over with a new strip or tolerate your mistake. Beyond its relevance to interior decorating, durable, reversible adhesion could allow for reusable envelopes, gravity-defying boots, and more heavy-duty industrial applications like car assembly.

Such adhesion has eluded scientists for years but is naturally found in snail slime. A snail’s epiphragm — a slimy layer of moisture that can harden to protect its body from dryness — allows the snail to cement itself in place for long periods of time, making it the ultimate model in adhesion that can be switched on and off as needed. In a new study, Penn Engineers demonstrate a strong, reversible adhesive that uses the same mechanisms that snails do.

This study is a collaboration between Penn Engineering, Lehigh University’s Department of Bioengineering, and the Korea Institute of Science and Technology.

Read the full story on Penn Engineering’s Medium blog. 

Low-Dose Radiation CT Scans Could Be Improved by Machine Learning

Machine learning is a type of artificial intelligence growing more and more popular for applications in bioengineering and therapeutics. Based on learning from patterns in a way similar to the way we do as humans, machine learning is the study of statistical models that can perform specific tasks without explicit instructions. Now, researchers at Rensselaer Polytechnic Institute (RPI) want to use these kinds of models in computerized tomography (CT) scanning by lowering radiation dosage and improving imaging techniques.

A recent paper published in Nature Machine Intelligence details the use of modularized neural networks in low-dose CT scans by RPI bioengineering faculty member Ge Wang, Ph.D., and his lab. Since decreasing the amount of radiation used in a scan will also decrease the quality of the final image, Wang and his team focused on a more optimized approach of image reconstruction with machine learning, so that as little data as possible would be altered or lost in the reconstruction. When tested on CT scans from Massachusetts General Hospital and compared to current image reconstruction methods for the scans, Wang and his team’s method performed just as well if not better than scans performed without the use of machine learning, giving promise to future improvements in low-dose CT scans.

A Mind-Controlled Robotic Arm That Requires No Implants

A new mind-controlled robotic arm designed by researchers at Carnegie Mellon University is the first successful noninvasive brain-computer interface (BCI) of its kind. While BCIs have been around for a while now, this new design from the lab of Bin He, Ph.D.,  a Trustee Professor and the Department Head of Biomedical Engineering at CMU, hopes to eliminate the brain implant that most interfaces currently use. The key to doing this isn’t in trying to replace the implants with noninvasive sensors, but in improving noisy EEG signals through machine learning, neural decoding, and neural imaging. Paired with increased user engagement and training for the new device, He and his team demonstrated that their design enhanced continuous tracking of a target on a computer screen by 500% when compared to typical noninvasive BCIs. He and his team hope that their innovation will help make BCIs more accessible to the patients that need them by reducing the cost and risk of a surgical implant while also improving interface performance.

People and Places

Daeyeon Lee, professor in the Department of Chemical and Biomolecular Engineering and member of the Bioengineering Graduate Group Faculty here at Penn, has been selected by the U.S. Chapter of the Korean Institute of Chemical Engineers (KIChE) as the recipient of the 2019 James M. Lee Memorial Award.

KIChE is an organization that aims “to promote constructive and mutually beneficial interactions among Korean Chemical Engineers in the U.S. and facilitate international collaboration between engineers in U.S. and Korea.”

Read the full story on Penn Engineering’s Medium blog.

We would also like to congratulate Natalia Trayanova, Ph.D., of the Department of Biomedical Engineering at Johns Hopkins University on being inducted into the Women in Tech International (WITI) Hall of Fame. Beginning in 1996, the Hall of Fame recognizes significant contributions to science and technology from women. Trayanova’s research specializes in computational cardiology with a focus on virtual heart models for the study of individualized heart irregularities in patients. Her research helps to improve treatment plans for patients with cardiac problems by creating virtual simulations that help reduce uncertainty in either diagnosis or courses of therapy.

Finally, we would like to congratulate Andre Churchwell, M.D., on being named Vanderbilt University’s Chief Diversity Officer and Interim Vice Chancellor for Equity, Diversity, and Inclusion. Churchwell is also a professor of medicine, biomedical engineering, and radiology and radiological sciences at Vanderbilt, with a long career focused in cardiology.