U.S. News Ranks Penn Bioengineering No. 4

U.S. NewsEvery year, U.S. News & World Report compiles the rankings of Bioengineering and Biomedical Engineering departments across the country. Today, U.S. News revealed its rankings for 2019. Penn Bioengineering placed 4th among almost two hundred programs. Tied now with programs that include MIT, UC Berkeley, and Stanford, Penn BE is the fastest rising program in the Top 10. The department also strengthened its position as the highest ranked science and engineering program at Penn in this year’s rankings.

“It was welcome news to know that we were evaluated so highly by our peers” says David Meaney, chair of Penn BE, “I really think it is a statement of the students we attract to Penn, our educational programs, and the cutting edge research done by our faculty”.

Penn Engineering also rose in the rankings, rising one spot to #18.  Computed based on scores from peers, recruiters, and research activity, the rankings show that Penn BE lives in a healthy engineering ecosystem!

Dan Huh Receives $1M CRI Grant to Study Cancer

CRI huh
Dan Huh, Ph.D.

Dan Huh, Wilf Family Term Assistant Professor in the Penn Department of Bioengineering, has received the Cancer Research Institute (CRI) Technology Impact Award. Dr. Huh, whose research attempts to model cancer-immune cell interactions in microphysiological systems, will receive $1 million over the next three years for direct costs of his research.

“This award will provide us with an exciting opportunity to explore the potential of our organ-on-a-chip technology for the study of cancer immunotherapy, which is one of the most promising yet poorly understood clinical strategies for cancer treatment,” Dr. Huh said. “I am honored to receive this major award and excited with the prospect of contributing to this rapidly emerging area of medicine using innovative bioengineering technologies.”

Join us in congratulating Dr. Huh!

How Cells Spread in Fibrous Environments

New research by faculty in the University of Pennsylvania Department of Bioengineering is examining the interplay between cells and their environment and how they impact the cells’ ability to grow and spread, showing that stiffness is not the only factor researchers should consider when studying this process.

The relationship between cellular adhesion and spread is a key factor in cancer metastasis. Better understanding of this dynamic would improve diagnosis of the disease and provide a potential target in combating it; reducing the ability of cells to grip their environment could keep them contained.

 

fibrous environemnts
Vivek Shenoy (left) and Jason Burdick

The study, published in the Proceedings of the National Academy of Sciences, was led by Vivek Shenoy, professor in the Department of Materials Science and Engineering, co-director of Penn’s Center for Engineering Mechanobiology, and a secondary faculty member in the Department of Bioengineering, along with Xuan Cao and Ehsan Ban, members of his lab. They collaborated with Jason Burdick, professor in the Department of Bioengineering, Boston University’s Christopher Chen, the University of Michigan’s Brendon Baker and the University of Hong Kong’s Yuan Lin.

This collaboration reflects work of The Center for Engineering Mechanobiology, a National Science Foundation-funded Science and Technology Center that supports interdisciplinary research on the way cells exert and are influenced by the physical forces in their environment.

​​​​​​​Previous work from Shenoy’s group has shown that the relationship between cancer cells and the extracellular matrix is dynamic, containing feedback mechanisms that can change the ECM’s properties, including overall stiffness. One earlier study investigated how cancer cells attempt to strike a balance in the density of the fibrous netting surrounding them. If there are too few fibers to grip, the cells can’t get enough traction to move. If there are too many, the holes in the net become too small for the cells to pass through.

Read more at the Penn Engineering blog.

BE Alumni Among Biomaterials Society Leaders

Penn has one of the most distinctive graduate programs in the country, and is proud to graduate the first Ph.D. in Bioengineering in the United States. With such a history, our alumni have succeeded as professors, entrepreneurs, policy leaders, and industry pioneers. One recent example of this Penn tradition  is leadership in national organizations.

At this moment, several faculty in the department (Drs. Susan Margulies, Beth Winkelstein, and Dan Hammer) hold significant positions within the Biomedical Engineering Society (BMES), a cross-cutting national organization for Bioengineering.

Withing the field of biomaterials, the preeminent international organization is the Society for Biomaterials (SfB). Dedicated to the advancement of biomaterials science, the SfB was created more than four decades at nearly the same time the Bioengineering department was established at Penn. Many of our alumni are now part of the senior leadership in the SfB, including the following.

President: David Kohn

leaders kohn

President-elect: Andrés García

leaders garcía

Member-at-large: Helen Lu

leaders lu

In fact, of the three officers elected this year, two were from Penn (Andrés and Helen).  We also have strong alumni representation across the various committees within the SfB. We extend our congratulations — with great pride — to our Penn family.

Margulies Named BME Chair at GA Tech/Emory

Margulies
Susan Margulies, Ph.D.

Susan S. Margulies, Ph.D., currently professor of bioengineering at the University of Pennsylvania, has been named the Wallace H. Coulter Chair of the Department of Biomedical Engineering at Georgia Tech/Emory University and the Georgia Research Alliance Eminent Scholar in Injury Biomechanics. Her appointment begins August 1.

Dr. Margulies’s history at Penn goes back to 1982, she arrived at Penn to earn a master’s degree in the bioengineering department, followed by her Ph.D. in 1987. In 1993, she returned to Penn as an assistant professor, with promotion to associate in 1998 and full professor in 2004.

“At GT-Emory BME I will lead 72 faculty and 1,500 students, and look forward to creating impact in a new environment,” Dr. Margulies says. “As a Penn alum and emeritus faculty member, my ties here run deep. I look forward to keeping in touch.”

Dr. Margulies’s has deep roots at Penn indeed, and her accomplishments are broad and distinctive. They include:

  • Creating new faculty mentoring programs across the university, including the Penn Faculty Pathways program
  • Originating the Penn Forum for Women Faculty, a key campus resource for discussion and collaboration
  • Chairing the Faculty Senate
  • Teaching a broad number of courses spanning Introduction to Bioengineering through to Pedagogical Methods in Engineering Education
  • Establishing many new research initiatives that extended into Children’s Hospital of Philadelphia and significant relationships with industry
  • Activity with several national leadership positions

On Dr. Margulies’s departure, David Meaney, the department chair, said, “We will miss Susan’s wisdom and insight, but we wish her the very best in her next step.”