Student Spotlight: Bella Mirro

Bella Mirro (BE 2023)

Bella Mirro, a fourth year student in Bioengineering who also minors in Chemistry, spoke with 34th Street Magazine about her many roles at Penn, including being Co–President of Shelter Health Outreach Program (SHOP), a Research Assistant in lab of Michal A. Elovitz, the Hilarie L. Morgan and Mitchell L. Morgan President’s Distinguished Professor in Women’s Health at Penn Medicine, and a Penn Engineering Council Marketing Team Member. In this Q&A, she discusses her research in women’s health and her passions for accessible healthcare, serving Philadelphia’s homeless community, and good food.

Read “Ego of the Week: Bella Mirro” in 34th Street.

A Novel Method for Monitoring the ‘Engine’ of Pregnancy

Combining optical measurements with ultrasound, an interdisciplinary team from the School of Arts & Sciences, Perelman School of Medicine, and CHOP developed a device to better measure blood flow and oxygenation in the placenta. (Image: Lin Wang)

A study published in Nature Biomedical Engineering details a novel method for imaging the placenta in pregnant patients as well as the results of a pilot clinical study. By combining optical measurements with ultrasound, the findings show how oxygen levels can be monitored noninvasively and provides a new way to generate a better understanding of this complex, crucial organ. This research was the result of a collaboration of the groups of the University of Pennsylvania’s Arjun Yodh and Nadav Schwartz with colleagues from the Children’s Hospital of Philadelphia (CHOP) and was led by postdoc Lin Wang.

Schwartz describes the placenta as the “engine” of pregnancy, an organ that plays a crucial role in delivering nutrients and oxygen to the fetus. Placental dysfunction can lead to complications such as fetal growth restriction, preeclampsia, and stillbirth. To increase knowledge about this crucial organ, the National Institute of Child Health and Human Development launched the Human Placenta Project in 2014. One focus of the program is to develop tools to assess human placental structure and function in real time, including optical devices.

For three years, the researchers optimized the design of their instrument and tested it in preclinical settings. The process involved integrating optical fibers with ultrasound probes, exploring various ultrasound transducers, and improving the multimodal technology so that measurements were stable, accurate, and reproducible while collecting data at the bedside. The resulting instrumentation now enables researchers to study the anatomy of the placenta while also collecting detailed functional information about placenta blood flow and oxygenation, capabilities that existing commercially devices do not have, the researchers say.

Because the placenta is located far below the body’s surface, one of the key technical challenges addressed by Wang, a postdoc in Yodh’s lab, was reducing background noise in the opto-electronic system. Light is scattered and absorbed when it travels through thick tissues, Yodh says, and the key for success was to reduce background interference so that the small amount of light that penetrates deep into the placenta and then returns is still large enough for a high-quality measurement.

“We’re sending a light signal that goes through the same deep tissues as the ultrasound. The extremely small amount of light that returns to the surface probe is then used to accurately assess tissue properties, which is only possible with very stable lasers, optics, and detectors,” says Yodh. “Lin had to overcome many barriers to improve the signal-to-noise ratio to the point where we trusted our data.”

Read the full story in Penn Today.

The authors are Lin Wang, Jeffrey M. Cochran, Kenneth Abramson, Lian He, Venki Kavuri, Samuel Parry, Arjun G. Yodh, and Nadav Schwartz from Penn; Tiffany Ko, Wesley B. Baker, and Rebecca L. Linn from the Children’s Hospital of Philadelphia, and David R. Busch, previously a research associate at Penn and now at the University of Texas Southwestern Medical School.

Arjun Yodh is the James M. Skinner Professor of Science in the Department of Physics and Astronomy in the School of Arts & Sciences at the University of Pennsylvania. He is a member of the Penn Bioengineering Graduate Group.

Nadav Schwartz is an Associate Professor in the Department of Obstetrics and Gynecology in Penn’s Perelman School of Medicine.

Lin Wang is a postdoc in the Department of Physics and Astronomy in Penn’s School of Arts & Sciences.

This research was supported by National Institutes of Health grants F31HD085731, R01NS113945, R01NS060653, P41EB015893, P41EB015893, T32HL007915, and U01HD087180.

2022 Penn Engineering Senior Design Project Competition Winners Announced

by Ebonee Johnson

Each year, Penn Engineering’s seniors present their Senior Design projects, a year-long effort that challenges them to test and develop solutions to real-world problems, to their individual departments. The top three projects from each department go on to compete in the annual Senior Design Competition, sponsored by the Engineering Alumni Society, which involves pitching projects to a panel of judges who evaluate their potential in the market.

This year’s panel included 42 judges, 21 in-person and 21 online, who weighed in on 18 projects. Each winning team received a $2,000 prize, generously sponsored by Penn Engineering alumnus Kerry Wisnosky.

This year, Bioengineering teams won two of the four interdepartmental awards.

Technology & Innovation Award

This award recognized the team whose project represents the highest and best use of technology and innovation to leverage engineering principles.

Team Modulo Prosthetics with Vijay Kumar, Dean of Penn Engineering, and Lyle Brunhofer, Chair of the 2022 Senior Design Competition Committee.

Winner: Team Modulo Prosthetics
Department: Bioengineering
Team Members: Alisha Agarwal, Michelle Kwon, Gary Lin, Ian Ong, Zachary Spalding
Mentor: Michael Hast
Instructors: Sevile Mannickarottu, David Meaney, Michael Siedlik
Abstract: Modulo Prosthetic is an adjustable, low-cost, thumb prosthetic with integrated haptic feedback that attaches to the metacarpophalangeal (MCP) joint of partial hand amputees and assists in activities of daily living (ADLs).

Leadership Award

This award recognizes the team which most professionally and persuasively presents their group project to incorporate a full analysis of their project’s scope, advantages and challenges, as well as addresses the research’s future potential and prospects for commercialization.

Team ReiniSpec with Vijay Kumar, Dean of Penn Engineering, and Lyle Brunhofer, Chair of the 2022 Senior Design Competition Committee.

Winner: Team ReiniSpec
Department: Bioengineering
Team Members: Caitlin Frazee, Caroline Kavanagh, Ifeoluwa Popoola, Alexa Rybicki, Michelle White
Mentor: JeongInn Park
Instructors: Sevile Mannickarottu, David Meaney, Michael Siedlik
Abstract: ReiniSpec is a redesigned speculum to improve the gynecological exam experience, increasing patient comfort with a silicone shell and using motorized arm adjustments to make it easily adjustable for each patient, while also incorporating a camera, lights, and machine learning to aid in better diagnosis by gynecologists.

Read the full list of competition winners in Penn Engineering Today.

 The 2022 Senior Design Competition Committee was chaired by Lyle Brunhofer, Penn Engineering Alumni Society Board Member and alumnus of Penn Bioengineering (BSE 2014, Master’s 2015).

Work for these and all Bioengineering senior design projects was conducted in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching lab for the Department of Bioengineering. Learn more about all eleven 2022 senior design projects in Bioengineering here.

2022 Penn Bioengineering Senior Design Teams Win Multiple Accolades

After a year of hybrid learning, Penn Bioengineering (BE) seniors were excited to return to the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace for Senior Design (BE 495 & 496), a two-semester course in which students work in teams to conceive, design and pitch their capstone projects in bioengineering. This year’s projects include tools for monitoring health, software to improve communication for the healthcare and supply chain industries, and devices to improve patient care for women and underrepresented minorities.

The year culminated in the annual Senior Design Expo on April 13 in the Singh Center for Nanotechnology, in which the students presented their pitches to a panel of alumni judges, followed by demonstrations in the George H. Stephenson  Foundation Educational Laboratory & Bio-MakerSpace which were open to the entire Penn community. This year’s winners of the Bioengineering Senior Design Competition were teams Chrysalis, Modulo Prosthetics, and ReiniSpec.

Team 11 (ReiniSpec) From L to R: Ifeoluwa Popoola, Alexa Rybicki, JeongInn Park (TA), Caitlin Frazee, Michelle White, Caroline Kavanagh (on laptop).

The three winning teams went on to compete in the annual interdepartmental Senior Design Competition sponsored by the Penn Engineering Alumni Society. BE took home two of the four interdepartmental awards: Team Modulo Prosthetics won the “Technology and Innovation Prize,” recognizing the project which best represents the highest and best use of technology and innovation to leverage engineering principles; and Team ReiniSpec won the “Leadership Prize,” which recognizes the team which most professionally and persuasively presents their group project to incorporate a full analysis of their project scope, advantages, and challenges, and addresses the commercialization and future potential of their research.

All BE teams were also required to submit their projects to local and national competitions, and were met with resounding success. “The creativity and accomplishment of this Senior Design class is really unparalleled,” said David Meaney, Solomon R. Pollack Professor in Bioengineering, Senior Associate Dean of Penn Engineering, and instructor for Senior Design. “The number of accolades received by these students, as well as the interest in transforming their ideas into real products for patients, reached a new level that makes us extremely proud.”

Keep reading for a full list of this year’s projects and awards.

Team 1 – MEViD

MEViD (Multichannel Electrochemical Viral Diagnostic) is a modular, low cost device that leverages electrochemistry to rapidly diagnose viral diseases from saliva samples.

Team members: Yuzheng (George) Feng, Daphne Kontogiorgos-Heintz, Carisa Shah, Pranshu Suri, & Rachel Zoneraich

Team 2 – MOD EZ-IO

MOD EZ-IO is a low-cost, novel intraosseous drill that uses force and RPM readings to alert the user via an LED when they have breached cortical bone and entered cancellous bone, guiding proper IO placement.

Team members: Gregory Glova, Kaiser Okyan, Patrick Paglia, Rohan Vemu, & Tshepo Yane

Team 3 – Harvest by Grapevine

Harvest by Grapevine is a user-centric software solution that merges social network communication and supply chain logistics to connect hospitals and suppliers under one unified platform.

Team members: Nicole Bedanova, Kerry Blatney, Blake Grimes, Brenner Maull, & Lukas Yancopoulos

Team 4 – CliniCall

CliniCall helps streamline and centralize communication channels, offering a real-time monitoring device that enables on-site/attending physicians to communicate with on-call physicians through a livestream of patients and data.

Team members: Neepa Gupta, Santoshi Kandula, Sue Yun Lee, & Ronil Synghal

Team 5 – PneuSonus

PneuSonus is a low-cost, user-friendly wearable strap that aids in detecting pediatric pneumonia by using frequency analysis of sound waves transmitted through the lungs to identify specific properties related to fluid presence, a valid indicator specific to pneumonia.

Team members: Iman Hossain, Kelly Lopez, Sophia Mark, Simi Serfati, & Nicole Wojnowski

Team 6 – Chrysalis

Chrysalis is a smart swaddle system comprising an electric swaddle and accompanying iOS application that comforts neonatal abstinence syndrome infants via stochastic resonance and maternal heartbeat vibrational patterns to reduce opioid withdrawal symptoms without pharmacological intervention or constant nurse oversight as well as streamlines the Eat, Sleep, Console documentation process for nurses.

Team members: Julia Dunn, Rachel Gu, Julia Lasater, & Carolyn Zhang

Team 7 – EquitOx

EquitOx is a revolutionized fingertip pulse oximeter designed for EMS that addresses racial inequality in medicine through the use of one-off tongue-calibrated SpO2 measurements.

Team members: Ronak Bhagia, Estelle Burkhardt, Juliette Hooper, Caroline Smith, & Kevin Zhao

Team 8 – Modulo Prosthetics

Modulo Prosthetic is an adjustable, low-cost, thumb prosthetic with integrated haptic feedback that attaches to the metacarpophalangeal (MCP) joint of partial hand amputees and assists in activities of daily living (ADLs).

Team members: Alisha Agarwal, Michelle Kwon, Gary Lin, Ian Ong, & Zachary Spalding

Team 9 – Cor-Assist By Cygno Technologies

COR-ASSIST by Cygno Technologies is a low-cost intra-aortic balloon enhancement that directly supports heart function by increasing cardiac output to 2.8L/min, at a much lower cost and bleeding risk than the current Impella cardiac assist device.

Team members: Francesca Cimino, Allen Gan, Shawn Kang, Kristina Khaw, & William Zhang

Team 10 – Pedalytics

Pedalytics Footwear is a rechargeable sandal that continuously monitors foot health and prevents diabetic foot ulcer formation by novelly tracking three key metrics indicative of ulceration, temperature, oxygen saturation, and pressure, and sending alerts to patients via the Pedalytics app when metric abnormalities are detected.

Team members: Samantha Brosler, Constantine Constantinidis, Quincy Hendricks, Ananyaa Kumar, & María José Suárez

Team 11 – ReiniSpec

ReiniSpec is a redesigned speculum to improve the gynecological exam experience, increasing patient comfort with a silicone shell and using motorized arm adjustments to make it easily adjustable for each patient, while also incorporating a camera, lights, and machine learning to aid in better diagnosis by gynecologists.

Team members: Caitlin Frazee, Caroline Kavanagh, Ifeoluwa Popoola, Alexa Rybicki, & Michelle White

Learn more about the 2022 Senior Design projects, including full abstracts and photo gallery, on the Stephenson Bio-MakerSpace website.

Watch all the 2022 project pitches on the BE Labs Youtube channel 2022 Senior Design Playlist:

Looking Towards the Future Through an Interdisciplinary Lens

by Erica K. Brockmeier

Yasmina Al Ghadban, a senior in the School of Engineering and Applied Science from Beirut, was able to connect her undergraduate education in bioengineering and psychology with her passion for public health through teaching, research, and extracurricular activities. Now, she is poised to leverage her “interdisciplinary lens” towards a future career in public health.

While reflecting on her undergraduate journey at Penn, senior Yasmina Al Ghadban says that she has a “ton of memories” she will take with her: lifelong friends made and skills developed through coursework, research, and teaching experiences, the chance to engage with public health communities on campus, and traveling for courses and internships. “That’s the beauty of Penn,” she says. “There’s just so many opportunities everywhere.”

As a double major in bioengineering and psychology, Al Ghadban, who is from Beirut, has certainly taken advantage of many such opportunities. Now, she is poised to leverage her “interdisciplinary lens” towards a future career in public health.

Problem-solving perspectives

Looking for a place to grow and become more independent, Al Ghadban decided to come to Penn after graduating from the International College in Lebanon. After taking an introduction to bioengineering course during her freshman year, she became enthralled by the hands-on nature of the program and enrolled in the School of Engineering and Applied Science. “I really enjoyed working with circuits and Arduino, being able to synthesize things, and I felt like being in engineering was the place where I was going to gain the most skills,” she says.

Al Ghadban is applying those skills as she completes her senior design project. She and a team of four seniors are building an autonomous robot equipped with Lidar sensors that it uses to create a map of a physical space. The team also programmed their robot to recognize high-touch surfaces that it then disinfects with UV light. “It’s a technology that is completely autonomous, cheaper than what’s on the market, and doesn’t put people at risk when they go in to disinfect,” she says. The team recently put the finishing touches on the project and presented their robot as part of a demonstration on April 14.

In addition to her degree in engineering, Al Ghadban’s interests in public and mental health spurred her to take courses and eventually pursue a double major in psychology, a field that she sees as complementary to engineering. “In psychology, we focus a lot on research and study design, research bias, and these things are similar in engineering and psychology,” she says. “Overall, I think they gave me different perspectives in terms of problem solving, and it’s nice to have that interdisciplinary lens.”

One place where Al Ghadban was able to use this interdisciplinary lens was while working as an research assistant in the Rehabilitation Robotics Lab with Michelle Johnson during her sophomore year. “The focus of the lab is to create robots for post-stroke rehabilitation, and the robotics part is very engineering-focused, but there is another part where people struggle doing the exercises,” she says. “Being able to engage with people and increasing their likelihood of doing that intervention, you rely on a lot from psychology, like interventions from positive psychology or research on how people stay engaged.”

Continue reading at Penn Today.

Penn Bioengineering Postdoc Rachel Riley Named Assistant Professor at Rowan University

Rachel Riley, Ph.D.

The Department of Bioengineering is proud to congratulate Postdoctoral Fellow Rachel Riley on her appointment as an Assistant Professor in Biomedical Engineering at Rowan University starting September 2020.

Originally from Matawan, NJ, Riley has been an NIH Postdoctoral Fellow in the Mitchell Lab since 2018. Her move to a faculty position at Rowan marks a return, as she received her B.S. in Civil and Environmental Engineering there in 2012. Riley went on to receive her Ph.D. in Biomedical Engineering in 2018 at the University of Delaware with Emily Day, Ph.D. before joining the lab of Michael J. Mitchell, Ph.D., Skirkanich Assistant Professor of Innovation, later that year. The Mitchell Lab’s research lies at the interface of biomaterials science, drug delivery, and cellular and molecular bioengineering to fundamentally understand and therapeutically target biological barriers.

“Rachel has had a prolific academic career at the University of Delaware and at Penn, launching several exciting research projects and mentoring the next generation of STEM researchers,” Mitchell says. “I’m very hopeful that her new position as an Assistant Professor of Biomedical Engineering at Rowan University will permit her to engineer new drug delivery technologies for women’s health applications.”

Research in the Riley Lab at Rowan will explore how nanoparticle drug delivery technologies can be engineered specifically for applications in women’s health. They will use nanoparticles as tools to study and treat gynecological cancers, fetal diseases, and pregnancy complications. Riley’s ultimate goal is to gain a fundamental understanding of how nanoparticle structure influences delivery to gynecological tissues to enable them to take an engineering approach to tackle new applications in women’s health.

Riley says that she is committed to supporting women and minorities in STEM disciplines and she looks forward to continuing collaborations with Penn and starting new collaborations with researchers at Cooper Medical School at Rowan University (CMSRU). Congratulations, Dr. Riley!