Study Reveals New Insights on Brain Development Sequence Through Adolescence

by Eric Horvath

3D illustration of a human brain
Image: Courtesy of Penn Medicine News

Brain development does not occur uniformly across the brain, but follows a newly identified developmental sequence, according to a new Penn Medicine study. Brain regions that support cognitive, social, and emotional functions appear to remain malleable—or capable of changing, adapting, and remodeling—longer than other brain regions, rendering youth sensitive to socioeconomic environments through adolescence. The findings are published in Nature Neuroscience.

Researchers charted how developmental processes unfold across the human brain from the ages of 8 to 23 years old through magnetic resonance imaging (MRI). The findings indicate a new approach to understanding the order in which individual brain regions show reductions in plasticity during development.

Brain plasticity refers to the capacity for neural circuits—connections and pathways in the brain for thought, emotion, and movement—to change or reorganize in response to internal biological signals or the external environment. While it is generally understood that children have higher brain plasticity than adults, this study provides new insights into where and when reductions in plasticity occur in the brain throughout childhood and adolescence.

The findings reveal that reductions in brain plasticity occur earliest in “sensory-motor” regions, such as visual and auditory regions, and occur later in “associative” regions, such as those involved in higher-order thinking (problem solving and social learning). As a result, brain regions that support executive, social, and emotional functions appear to be particularly malleable and responsive to the environment during early adolescence, as plasticity occurs later in development.

“Studying brain development in the living human brain is challenging. A lot of neuroscientists’ understanding about brain plasticity during development actually comes from studies conducted with rodents. But rodent brains do not have many of what we refer to as the association regions of the human brain, so we know less about how these important areas develop,” says corresponding author Theodore D. Satterthwaite, the McLure Associate Professor of Psychiatry in the Perelman School of Medicine, and director of the Penn Lifespan Informatics and Neuroimaging Center (PennLINC).

Read the full story in Penn Medicine News.

N.B.: Theodore Satterthwaite in a member of the Penn Bioengineering Graduate Group.

Postdoctoral Fellow Linden Parkes Wins BBRF Young Investigator Grant

Linden Parkes, PhD

The Department of Bioengineering at Penn is thrilled to congratulate Linden Parkes on receiving a Brain & Behavior Research Foundation (BBRF) Young Investigator Grant for 2021-2022. This grant will support Parkes’ continued postdoctoral research under the supervision of Danielle S. Bassett, J. Peter Skirkanich Professor of Bioengineering and Electrical and Systems Engineering in the School of Engineering and Applied Science (SEAS),  Theodore D. Satterthwaite, Associate Professor of Psychiatry in the Perelman School of Medicine (PSOM), and Raquel E. Gur, the Karl and Linda Rickels Professor of Psychiatry in PSOM.

Originally from Australia, Parkes did his undergraduate B.Sc. (Hons.) in Psychology and Psychophysiology at the Swinburne University of Technology in Melbourne. He went on to receive his Ph.D. in Neuroscience from the Turner Institute for Brain and Mental Health at Monash University (also in Melbourne) under the supervision of Murat Yucel, Professor of Psychology, Alex Fornito, Professor of Psychology, and Ben Fulcher, Senior Lecturer in the School of Physics at the University of Sydney. After finishing his doctorate, Parkes moved to Philadelphia to take up a position as a postdoctoral fellow in Danielle Bassett’s Complex Systems Lab.

Parkes will use the BBRF’s support to continue his research examining the link between the symptoms of mental illness and the brain. In particular, he seeks to uncover how individual patterns of abnormal neurodevelopment link to, and predict, the emergence of psychosis symptoms through childhood and adolescence using longitudinal data. In turn, Parkes’ work will discover prognostic biomarkers for the psychosis spectrum that will help inform clinical outcome tracking.

“I am honored to have been selected for a Young Investigator Grant from the BBRF this year,” Parkes says. “This award will support me to conduct research that I believe will make real inroads into understanding the pathways that link abnormalities in neurodevelopment to the symptoms of psychosis. I feel grateful for the opportunity to complete my postdoctoral training at Penn. Penn has connected me with wonderful people who I’m sure will be lifelong mentors, colleagues, and peers.”

The BBRF Young Investigator Grants are valued at more than $10.3 million and are awarded annually to 150 of the world’s most promising young scientists to support the work of early career investigators with innovative ideas for groundbreaking neurobiological research seeking to identify causes, improve treatments, and develop prevention strategies for psychiatric disorders.

Read more about the BBRF 2020 Young Investigators here.