A Decade of BETA Day: Shaping the Success of Future Bioengineers

by Katherine Sas

Students learn about bioengineering in the BE Labs at the inaugural BETA Day (credit: Felice Macera)

Last year marked not just the 50th anniversary of the Department of Bioengineering (BE) but the 10th anniversary of Bioengineer-Teach-Aspire (BETA) Day, one of the most beloved and impactful programs run by the Graduate Association of Bioengineers (GABE).

BETA Day, an annual event in which a diverse group of Philadelphia middle school students learns about bioengineering and a variety of science, technology, engineering and math (STEM) fields from BE graduate students, has grown into an institution, one whose impact no one could have foreseen.

GABE’s original goal was to provide social opportunities for BE graduate students. While this is still an important function of the group, in the mid-2010s, students and board members found themselves looking for opportunities to provide more formalized outreach and mentorship. They wanted to have an impact on Philadelphia and cultivate the next generation of bioengineers.

The Seeds of BETA Day

Benjamin Freedman, a principal investigator at Beth Israel Deaconess Medical Center, Assistant Professor of Orthopedic Surgery at Harvard Medical School, and founder of biotech startup Limax Biosciences, earned his doctorate in Bioengineering in the lab of Louis Soslowsky, Fairhill Professor in the Department of Orthopaedic Surgery within the Perelman School of Medicine (PSOM) and in Bioengineering within the School of Engineering and Applied Science (Penn Engineering). Freedman played a key role in BETA Day’s founding. 

In 2009, Freedman, then an undergraduate at the University of Rochester, attended a talk at the City College of New York (CCNY), which sparked his interest in mentorship. Sheldon Weinbaum, a Distinguished Professor in Biomedical and Mechanical Engineering at CCNY and the Biomedical Engineering Society (BMES) inaugural diversity award winner, spoke about “fulfilling the dream” of mentorship and the struggle for inclusion in STEM fields, echoing the language of Martin Luther King Jr. 

Inspired by this encounter, Freedman got involved with a mentorship program during his senior year. He later signed up for a lunch with Weinbaum to talk about mentorship. Freedman recalls that Weinbaum’s face “lit up” when he realized that this student didn’t just want to talk science but was genuinely interested in inclusion, diversity and mentorship.

Arriving at Penn Engineering and PSOM for graduate school in 2011, Freedman joined GABE, bringing this passion and experience with him and helping GABE to shape and clarify their outreach and mentorship programs. 

From Campus to Community

Along with other GABE board members, such as Cori Riggin and Shauna Dorsey, Freedman worked over the course of a year and a half to identify the mentorship needs within BE and gauge student interest. David Meaney, Solomon R. Pollack Professor and then Chair of BE, and former BE faculty Susan Margulies, now Professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, were particularly involved in these discussions. 

Benjamin Freedman (left) addresses the first BE mentoring cohort (credit: Felice Macera)

The GABE board reorganized to include mentorship and outreach chairs, and eventually started a formal mentorship program in partnership with the Penn undergraduate Biomedical Engineering Society (BMES). The mentorship program continues to this day, creating opportunities for BE graduate students to engage with undergraduate concerns through one-on-one meetings to discuss career or graduate school advice, summer BBQ’s, roundtable discussions and monthly meetups.

With an internal mentorship program established, the team turned their focus to Philadelphia. Initially, GABE established a partnership with iPraxis, a local STEM education non-profit, to do some outreach activities in middle schools. This partnership resulted in an Outstanding Outreach Award from the national Biomedical Engineering Society in 2014. But with the department’s 40th anniversary approaching, GABE’s members wanted to do something spectacular to celebrate and give back to the community.

Service Learning in Action

By then, Ocek Eke, Director of Graduate Students Programming at Penn Engineering, had been recently appointed Director of Global and Local Service Learning Programs. Eke provided Freedman and GABE advice on setting up effective outreach programs and to determine what resources the School could contribute. “We have a role to play to fulfill our mission,” Eke says, citing Penn’s motto, “Leges Sine Moribus Vanae,” which translates to “Laws without morals are useless.”

GABE’s efforts were part of a “wave” of interest in outreach and community service in both the department and the School, Eke remembers, including the undergraduate group Access Engineering and several service learning courses which took students to Asia, Africa and Central America. He was impressed by the lack of cynicism in the BE student body. “These are students who saw a need, who are passionate about what they want to achieve. They could have just been comfortable but were willing to go and stick their necks out. They used the resources we have here in Penn Engineering to address these needs.”

A (BETA) Day to Remember

The first BETA Day took place at the Singh Center for Nanotechnology, which had only just opened. Held with the enthusiastic participation of around 70 middle schoolers, and almost as many volunteers, the event included a full day of programming, with representation from every Penn Engineering department. There were science talks, workshops, and even a drone demo with Vijay Kumar, Nemirovsky Family Dean of Penn Engineering. The entire day was student-driven and staffed by volunteers, demonstrating the students’ commitment to making a difference.

The first annual BETA Day was held in the Singh Center for Nanotechnology (credit: Felice Macera)

GABE never imagined BETA Day as an annual event, but the first instance was so successful, it became hard to imagine not repeating it. Ten years later, the GABE board continues to introduce bioengineering to a diverse and ambitious group of middle schoolers every spring. 

In recent years, the location has shifted to other venues, including Pennovation Works, in Gray’s Ferry, and BE’s own education lab, the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace. Penn’s General Robotics, Automation, Sensing and Perception (GRASP) Lab has also become a key collaborator in BETA Day. 

In 2021, during the COVID-19 lockdown, the industrious and creative GABE board even tailored BETA Day activities to be held in an entirely virtual environment. “These types of events are not as successful when they’re only initiated by faculty,” says Freedman. Generating and sustaining student involvement has been a cornerstone of BETA Day’s continued success.

The Legacy of BETA Day

GABE’s mentorship efforts have grown as well, changing to meet evolving student needs. The mentorship program now involves students being placed in “families” of around four undergraduates and two graduate students, spanning a range of class years and experience levels. A third student association, the Master’s Association in Bioengineers (MAB), was established to better foster community and facilitate opportunities for master’s students.  

The department also launched an applicant support program in 2020, enhancing BE’s mission of increasing diversity, equity and inclusion by pairing Ph.D. applicants to current doctoral students, who serve as mentors to help navigate the admissions process, giving feedback on application materials and providing other support to prospective students.

Structures of support and outreach activities like BETA Day have become a key emphasis of the department’s graduate student recruitment, helping to attract students who value the department’s core mission and increasing opportunities for underserved or underrepresented communities.

The legacy of that original BETA Day also continues in Freedman’s Lab. After graduating in 2017, having served on the GABE board and as President from 2015-2016, Freedman continued to mentor over 20 students during his postdoctoral research at Harvard. He is now building his own independent lab where diversity, mentorship and outreach are foundational pillars.

A Nebula of Inspiration

Perhaps the most consequential impact of BETA Day is the impression it makes on the middle schoolers who participate each year. “To really get to know what happens on BETA Day and what it’s true impact is, you need to experience it,” says Ravi Radhakrishnan, Herman P. Schwan Chair of the Department of Bioengineering and Professor in Bioengineering and in Chemical and Biomolecular Engineering. 

The legacy of BETA Day continues into its second decade. (credit: Afraah Shamim, BE Labs)

“I walked into the Stephenson Foundation Education Lab during BETA Day 2024,” recalls Radhakrishnan, “and what I saw was teams of teenagers tinkering with pipes that were clogged, strategizing on unclogging them without damaging them: an assignment that got them thinking in teams about how to prevent heart attacks. 

“Expose these young minds to design thinking, versatile tools, and critical problems in biomedical engineering, and the elegant solutions they brainstorm are truly mind blowing. BETA Day is like the nebula where future biomedical stars are born.”

How a Diversity Program Enabled a Childhood Orthopaedics Patient’s Research Dreams

by Julie Wood

As a child, Sonal Mahindroo would go to her orthopaedics appointments with her family, slowly becoming more and more fascinated by the workings and conditions of the musculoskeletal system. While being treated for scoliosis, she would receive children’s books from her doctor that helped provide clear and simplified explanations of orthopaedic topics, which supported her interest.

Nearly a decade later, Mahindroo is still interested in expanding her orthopaedic knowledge, and a Penn Medicine program is helping fuel that expansion. Now a senior at St. Bonaventure University in New York, Mahindroo spends her time at the university’s lab. But in addition to that, this year, she was able to take part in more learning opportunities with Penn Medicine’s support, via the McKay Orthopaedic Research Lab’s Diversity, Equity, and Inclusion (DEI) committee’s conference grant program.

McKay’s DEI committee — consisting of faculty, post-docs, graduate students, and staff — offers a welcoming environment and resources that support people of all identities, empowering them to bring forward unique perspectives to orthopaedic research.

“Our goal is to improve diversity and culture both within McKay and in the orthopaedic research community outside of Penn,” said Sarah Gullbrand, PhD, a research assistant professor at the McKay Lab. “We wanted to provide an opportunity for students to attend a conference and make connections to help them pursue their interest in orthopaedic research.”

The McKay conference grant supports undergraduate students who have been unable to get hands-on research experience. Participants are provided with the opportunity to network with leaders in the field of orthopaedic research, listen to cutting-edge research presentations, and learn about ways to get involved in orthopaedic research themselves.

“When launching the conference grant program earlier this year, I was motivated by my own experience attending a conference as an undergraduate. That experience really increased my interest in attending graduate school and taught me a lot about the breadth of research in orthopaedics,” said Hannah Zlotnick, a PhD student at the McKay Lab and member of the DEI committee. Through the McKay Conference Grants, the committee has supported two cohorts of students. “So far, we’ve been able to fund 11 undergraduate students from around the country to virtually attend orthopaedics conferences and receive early exposure to careers in STEM.”

Along with the conference grant, the McKay Lab holds workshops, book clubs, and other programs focused on DEI-related topics. As part of their efforts for promoting gender diversity in the field, the McKay Lab has previously partnered with the Perry Initiative to offer direct orthopaedic experiences for girls in high school, where they can learn how to suture, and perform mock fracture fixation surgeries on sawbones.

As a primarily male-populated field, orthopaedics could benefit greatly from diversity efforts. While women comprise approximately 50 percent of medical school graduates in the United States, they represent only 14 percent of orthopaedic surgery residents.

“The only women on staff at my orthopaedist’s office were receptionists. There were no female physicians or engineers to make my scoliosis brace,” Mahindroo said. “It was really cool coming to the McKay Lab and seeing how much the field has progressed since then.”

Read more at Penn Medicine News.

N.B. Hannah Zlotnick is a PhD student in Bioengineering studying in the lab of Robert Mauck, Mary Black Ralston Professor in Bioengineering and Orthopaedic Surgery.

Bioengineering Graduate Students Take the Annual BETA Day Online

By GABE Outreach Chairs and Ph.D. students David Gonzalez-Martinez and David Mai

BETA Day Biomaterials workshop

Every spring, the Graduate Association of Bioengineers (GABE) at Penn partners up with iPraxis, an educational non-profit organization based in Philadelphia, to organize BETA Day, an event that brings together Bioengineering graduate students and local Philadelphia grade school students to introduce them to the field of bioengineering, the life of graduate students, and hands-on scientific demonstrations. Due to COVID-19 restrictions, we adapted the traditional in-person BETA Day into a virtual event on Zoom. This year, we assembled kits containing the necessary materials for our chosen demonstrations and worked with iPraxis to coordinate their delivery to partner schools and their students. This enabled students to perform their demonstrations in a hands-on manner from their own homes; over 40 students were able to participate in extracting their own DNA and making biomaterials with safe household materials.

Michelle Johnson presents on her work in robotics

The day began with a fantastic lecture by Michelle Johnson, Associate Professor in Bioengineering and Physical Medicine and Rehabilitation, who introduced students to the field of rehabilitation robotics and shared her experience as a scientist. Students then learned about DNA and biomaterials through lectures mediated by the graduate students Dayo Adetu and Puneeth Guruprasad. After each lecture, students broke into breakout rooms with graduate student facilitators where they were able to get some hands-on scientific experience as they extracted DNA from their cheek cells and fabricated alginate hydrogels. Michael Sobrepera, a graduate student in Dr. Johnson’s lab, concluded the event by giving a lecture on the process of robotics development and discussed where the field is heading and some important considerations for the field.

Dayo Adetu, Bioengineering Master’s student and GABE President, teaches the students about Genetic Engineering

While yet another online event may seem unexciting, throughout the lectures students remained exceptionally engaged and raised fantastic questions ranging from the accessibility of low income communities to novel robotic therapeutic technologies to the bioethical questions robotic engineers will face as technologies advance. The impact of BETA day was evident as the high school students began to discuss the possible majors they would like to pursue for their bachelor’s degrees. Events like BETA Day give a glimpse into possible STEM fields and careers students can pursue.

STEM Outreach: You Do Belong in Science Podcast #2

STEM outreach

The real value of STEM outreach is the positive youth development and mentorship that students receive. Being inspired to pursue a STEM career? That’s just a welcome bonus, says guest Noni Williams, a math graduate student and data scientist . Noni joins Kayla and Sally of the Double Shelix podcast to discuss effective strategies for STEM and professional development outreach to kids and teens and her extensive experience leading initiatives from robotics and digital art festivals to AP Computer Science and slam poetry. Also, allyship correspondent Jon Muncie checks in for a discussion on how we can all work to distribute the burden of emotional labor equitably in our workplaces and beyond.

Sally and Kayla also discuss with Noni her experiences being the only woman and/or student from an underrepresented background in her graduate mathematics courses and balancing work as a data scientist at United Way of the Midlands with graduate school. Noni gives advice for others in similar situations. Some of Noni’s keys to success including tracking gratitude, finding peer mentors, and defining clear boundaries around her time. Noni brings her *extensive* experience leading STEM outreach initiatives for kids and teens to this episode.

Upcoming #YouDoBelongInScience episodes will feature your stories! Fill this form or call our voice mail, 415-895-0850, to share your story of (dis)belonging in STEM. Sally and Kayla are hoping to share a diverse set of experiences from our listeners, but they need you to help make that happen!

Get your Double Shelix and You Do Belong in Science stickers here.

Resources

Check out upcoming guests here.

If you liked this episode, listen to a previous Double Shelix episode with mentorship expert Julea Vlassakis -“Next Level Mentorship for Mentees and Mentors

Rate, review, and subscribe to this podcast on iTunes! And please, tell your friends about this podcast!

 

This Week in BioE (June 22, 2017)

Diversifying the Field

One of the ongoing issues in STEM (science, technology, engineering, and medicine) fields is a lack of diversity among students and faculty. Bioengineering stands out among other engineering fields because it enjoys terrific gender diversity. For example, about half of Penn Bioengineers are women, a feature of our class that goes back decades.

diversifyingHowever, diversity extends well beyond gender. For example, the National Research Mentoring Network (NRMN) has been working to increase diversity, including among students with disabilities. A consortium of people and groups providing mentors for science students, the MRMN recently highlighted the American Association for the Advancement of Science’s (AAAS) Entry Point! program, which focuses on helping students with physical disabilities. Mentoring, it turns out is a big part of helping these students succeed.

Another recent development that should help to increase diversity in the field is the awarding of a $1 million grant from the National Science Foundation’s Directorate of Engineering to the University of Wisconsin, Madison, and the College of Menominee Nation (CMN), a native American college in Wisconsin, to collaborate in engineering research and education. The new grant builds on a program begun in 2010 between the colleges to build labs and facilitate the transfer of pre-engineering students from CMN to UWM.

Brain Science Developments

Speaking of education, three recent news stories discuss how we might be able to expedite the learning process, increase intelligence, and reward ourselves when we create art. In one of the stories, a company called Kernel is investing $100 million in research at the University of Southern California to determine whether using brain implants, which have been helpful in some patients with epilepsy, can be used to increase or recover memory. If successful, this may bridge one critical treatment gap in neurology. About one out of every three people with epilepsy don’t respond to drug treatment.

In the second story, scientists at the University of Texas at Dallas were awarded a $5.8 million contract from DARPA to investigate the role of vagus nerve stimulation in accelerated learning of foreign languages. Stimulating the peripheral nervous system to activate and train areas of the brain is one more example that our nervous system is connected in ways that we do not yet understand completely. The Department of Defense hopes to use the technology to more quickly train intelligence operatives and code breakers.

Finally, in a third story involving the brain, a professor at Drexel University used functional near-infrared spectroscopy to determine which parts of the brain were activated while participants were making art. Dr. Girija Kaimal’s team found that creative endeavors activate the brain’s rewards pathway, as well as elevating the participants’ self-opinion. So making art always made people feel good about themselves; now we know more of the reasons why.