Engheta, Margulies Elected to the American Academy of Arts & Sciences

Two faculty affiliated with the Department of Bioengineering at the University of Pennsylvania have been elected to the American Academy of Arts & Sciences. They join nearly 270 new members honored in 2023, recognized for their excellence, innovation, leadership, and broad array of accomplishments.

Nader Engheta
Nader Engheta, the H. Nedwill Ramsey Professor.

Nader Engheta is the H. Nedwill Ramsey Professor, with affiliations in the departments of Electrical and Systems Engineering (primary appointment), Bioengineering (secondary appointment) and Materials Science and Engineering (secondary appointment) in the School of Engineering and Applied Science; and Physics and Astronomy (secondary appointment) in the School of Arts & Sciences. His current research activities span a broad range of areas including optics, photonics, metamaterials, electrodynamics, microwaves, nano-optics, graphene photonics, imaging and sensing inspired by eyes of animal species, microwave and optical antennas, and physics and engineering of fields and waves. He has received numerous awards for his research, including the 2023 Benjamin Franklin Medal in Electrical Engineering, the 2020 Isaac Newton Medal and Prize from the Institute of Physics (U.K.), the 2020 Max Born Award from OPTICA (formerly OSA), induction to the Canadian Academy of Engineering as an International Fellow (2019), U.S. National Academy of Inventors (2015), and the Ellis Island Medal of Honor from the Ellis Island Honors Society (2019). He joins four other Penn faculty elected to the Academy this year.

Read the announcement and the full list of Penn electees in Penn Today.

Susan Margulies, Ph.D. (Photo: Jack Kearse)

Susan Margulies, Professor in the Wallace H. Coulter Department of Biomedical Engineering in the College of Engineering at Georgia Tech, was also elected. Margulies is both Professor Emeritus in Penn Bioengineering and an alumna of the program, having earned her Ph.D. with the department in 1987. Margulies is an expert in pediatric traumatic brain injury and lung injury. She previously served as Chair of Biomedical Engineering at Georgia Tech/Emory University and in 2021 became the first biomedical engineer selected to lead the National Science Foundation’s (NSF) Directorate of Engineering.

Read the announcement of Margulies’ elected to the Academy at Georgia Tech.

This Patterned Surface Solves Equations at the Speed of Light

by Devorah Fischler

A tailored silicon nanopattern coupled with a semi-transparent gold mirror can solve a complex mathematical equation using light. (Image credit: Ella Maru studio)

Researchers at the University of Pennsylvania, AMOLF, and the City University of New York (CUNY) have created a surface with a nanostructure capable of solving mathematical equations.

Powered by light and free of electronics, this discovery introduces exciting new prospects for the future of computing.

Nader Engheta, H. Nedwill Ramsey Professor of Electrical and Systems Engineering at the University of Pennsylvania School of Engineering and Applied Science, is a visionary figure in optics and in electromagnetic platforms. For the last two decades, he has created theory and designed experiments to make electromagnetic and optical devices that operate at the fastest rate in the universe.

Engheta is the founder of the influential field of “optical metatronics.” He creates materials that interact with photons to manipulate data at the speed of light. Engheta’s contribution to this study marks an important advance in his quest to use light-matter interactions to surpass the speed and energy limitations of digital electronics, bringing analog computing out of the past and into the future.

“I began the work on optical metatronics in 2005,” says Engheta, “wondering if it were possible to recreate the elements of a standard electronic circuit at nanoscale. At this tiny size, it would be possible to manipulate the circuit with light, rather than electricity. After achieving this, we became more ambitious, envisioning collections of these nanocircuits as processors. In 2014, we were designing materials that used these optical nanostructures to perform mathematical operations, and in 2019, we anted up to entire mathematical equations using microwaves. Now, my collaborators and I have created a surface that can solve equations using light waves, a significant step closer to our larger goals for computing materials.”

The study, recently published in Nature Nanotechnology, demonstrates the possibility of solving complex mathematical problems and a generic matrix inversion at speeds far beyond those of typical digital computing methods.

The solution converges in about 349 femtoseconds (less than one trillionth of a second), orders of magnitude faster than the clock speed of a conventional processor.

Read the full story in Penn Engineering Today.

Nader Engheta is the H. Nedwill Ramsey Professor in the Departments of Electrical and Systems Engineering and in Bioengineering in the School of Engineering and Applied Science and Professor in Physics and Astronomy in the School of Arts & Sciences at the University of Pennsylvania.

Penn Scientist Nader Engheta Wins the Benjamin Franklin Medal

Nader Engheta
Nader Engheta (Image: Felice Macera)

by Amanda Mott

University of Pennsylvania scientist Nader Engheta has been selected as a 2023 recipient of the Benjamin Franklin Medal, one of the world’s oldest science and technology awards. The laureates will be honored on April 27 at a ceremony at the Franklin Institute in Philadelphia.

Engheta, H. Nedwill Ramsey Professor in Electrical and Systems Engineering, is among nine outstanding individuals recognized with Benjamin Franklin Medals this year for their achievements in extraordinary scientific, engineering and business leadership.

“As a scientist and a Philadelphian, I am deeply honored and humbled to receive the Franklin Medal. It is the highest compliment to receive an award whose past recipients include some of my scientific heroes such as Albert Einstein, Nikola Tesla, Alexander Graham Bell, and Max Planck. I am very thankful to the Franklin Institute for bestowing this honor upon me.”

Larry Dubinski, President and CEO of The Franklin Institute, says, “We are proud to continue The Franklin Institute’s longtime legacy of recognizing individuals for their contributions to humanity. These extraordinary advancements in areas of such importance as social equity, sustainability, and safety are significantly moving the needle in the direction of positive change and therefore laying the groundwork for a remarkable future.”

The 2023 Benjamin Franklin Medal in Electrical Engineering goes to Engheta for his transformative innovations in engineering novel materials that interact with electromagnetic waves in unprecedented ways, with broad applications in ultrafast computing and communication technologies.

“Professor Engheta’s pioneering work in metamaterials and nano-optics points the way to new and truly revolutionary computing capabilities in the future,” says University of Pennsylvania President Liz Magill. “Penn inaugurated the age of computers by creating the world’s first programmable digital computer in 1945. Professor Engheta’s work continues this tradition of groundbreaking research and discovery that will transform tomorrow. We are thrilled to see him receive the recognition of the Benjamin Franklin Medal.”

Engheta founded the field of optical nanocircuits (“optical metatronics”), which merges nanoelectronics and nanophotonics. He is also known for establishing and& developing the field of near-zero-index optics and epsilon-near-zero (ENZ) materials with near-zero electric permittivity. Through his work he has opened many new frontiers, including optical computation at the nanoscale and scattering control for cloaking and transparency. His work has far-reaching implications in various branches of electrical engineering, materials science, optics, microwaves, and quantum electrodynamics.

“This award recognizes Dr. Engheta’s trailblazing advances in engineering and physics,” says Vijay Kumar, Nemirovsky Family Dean of Penn Engineering.“ The swift and sustainable technologies his research in metamaterials and metatronics offers the world are the result of a lifelong commitment to scientific curiosity. For over 35 years, Nader Engheta has personified Penn Engineering’s mission of inventing the future.”

Nader Engheta is the H. Nedwill Ramsey Professor in the Departments of Electrical and Systems Engineering and Bioengineering in the School of Engineering and Applied Science and professor of physics and astronomy in the School of Arts & Sciences at the University of Pennsylvania.

This story originally appeared in Penn Today.

The Optical Society Names Nader Engheta the 2020 Max Born Award Recipient

Nader Engheta, Ph.D.

The Optical Society (OSA) has named Nader Engheta, H. Nedwill Ramsey Professor in the Department of Electrical and Systems Engineering, as the 2020 recipient of the Max Born Award.

Engheta, who also has appointments in the departments of Bioengineering and Materials Science and Engineering, is honored for pioneering contributions to optical metamaterials and nanoscale optics.

“The Born Award recognizes Nader Engheta’s exceptional contributions to the fields of metamaterials, transformation optics and nanophotonics,” said 2020 OSA President Stephen D. Fantone, founder and president of Optikos Corporation. “This honor is emblematic of the pioneering work he has done in near-zero index metamaterials.”

Read the full story on the Penn Engineering blog.