Konrad Kording on the Future of Brain-Computer Interfaces

Konrad Kording (Photo by Eric Sucar)

Though the technology for brain-computer interfaces (or BCI’s) has existed for decades, recent strides have been made to create BCI devices which are safer, smaller, and more effective. Konrad Kording, Nathan Francis Mossell University Professor in Bioengineering, Neuroscience, and Computer and Information Science, helps to elucidate the potential future of this technology in a recent feature in Wired. In the article, he discusses the “invasive” aspects of previous BCI technology, in contrast to recent innovations, such as a new device by Synchron, which do not require surgery and are consequently much less risky:

“The device, called a Stentrode, has a mesh-like design and is about the length of a AAA battery. It is implanted endovascularly, meaning it’s placed into a blood vessel in the brain, in the region known as the motor cortex, which controls movement. Insertion involves cutting into the jugular vein in the neck, snaking a catheter in, and feeding the device through it all the way up into the brain, where, when the catheter is removed, it opens up like a flower and nestles itself into the blood vessel’s wall. Most neurosurgeons are already up to speed on the basic approach required to put it in, which reduces a high-risk surgery to a procedure that could send the patient home the very same day. ‘And that is the big innovation,” Kording says.

Read “The Age of Brain-Computer Interfaces Is on the Horizon” in Wired.

BE Seminar: “Neural Engineering and the Primate Brain: Working at the Electrical and Optical Interface” (Bijan Pesaran)

Our final Penn Bioengineering seminar of the fall semester will take place this Thursday. Keep an eye on the BE events calendar for upcoming spring seminars.

Speaker: Bijan Pesaran, Ph.D.
Professor
Neural Science
New York University

Date: Thursday, December 16, 2021
Time: 3:30-4:30 PM EST
Zoom – check email for link
Room: Moore 216

Abstract: Neural engineering is enjoying an era of transformative growth. Classical methods that dominated the neurosciences for decades are being replaced by powerful new technologies. In this talk, I will discuss how to engineer electrical and optical interfaces to the primate brain. I will first present work on electrode interfaces that stimulate and record at the surface of and within the brain. I will show how simultaneously measuring and manipulating neurons immediately beneath electrode contacts during behavior delivers ground-truth data. The results have implications for electrode interface design and new generations of implantable biomedical devices. I will then turn to optical neural interfaces. Two-photon fluorescence microscopy images the activity of neurons expressing genetically-encoded calcium indicators and is most often performed in small animal models, such as the mouse, worm and fly. I will present a cellular-resolution robotic imaging platform to investigate the non-human primate brain at scale. I will finish by discussing potential applications of this technology to a range of scientific and clinical goals.

Bijan Pesaran Bio: Bijan Pesaran is interested in understanding large-scale circuits in the primate brain and how to engineer novel brain-based therapies. Bijan completed his undergraduate degree in Physics at the University of Cambridge, UK. After a year in the Theoretical Physics department at Bell Labs Murray Hill, he went on to earn his PhD in Physics at the California Institute of Technology. He then made the switch to neuroscience as a postdoctoral fellow in Biology at Caltech. Bijan has been on the faculty at New York University since 2006. He is currently a Professor of Neural Science in the Center for Neural Science. In 2013, he was a CV Starr Visiting Scholar at the Princeton Neuroscience Institute at Princeton University. Among other honors and awards, Bijan has received a Burroughs-Wellcome Career Award in the Biomedical Sciences, a Sloan Research Fellowship, a McKnight Scholar Award, the National Science Foundation CAREER Award and is a member of the Simons Collaboration for the Global Brain.

Penn Bioengineers Develop Implantable Living Electrodes

Living Electrode Panels (image courtesy of the Cullen Lab)

Connecting the human brain to electrical devices is a long-standing goal of neuroscientists, bioengineers, and clinicians, with applications ranging from deep brain stimulation (DBS) to treat Parkinson’s disease to more futuristic endeavors such as Elon Musk’s NeuraLink initiative to record and translate brain activity. However, these approaches currently rely on using implantable metallic electrodes that inherently provoke a lasting immune response due to their non-biological nature, generally complicating the reliability and stability of these interfaces over time. To address these challenges, D. Kacy Cullen, Associate Professor in Neurosurgery and Bioengineering, and Dayo Adewole, a doctoral candidate in Bioengineering, worked with a multi-disciplinary team of collaborators to develop the first “living electrodes” as an implantable, biological bridge between the brain and external devices. In a recent article published in Science Advances, the team demonstrated the fabrication of hair-like microtissue comprised of living neuronal networks and bundled tracts of axons the signal sending fibers of the nervous system protected within soft hydrogel cylinders. They showed that these axon-based living electrodes could be fully controlled and monitored with light thus eliminating the need for electrical contact and are capable of surviving and forming synapses with the brain as demonstrated in an adult rat model. While further advancements are necessary prior to clinical use, the current findings provide the foundation for a new class of “living electrodes” as a biological intermediary between humans and devices capable of leveraging natural mechanisms to potentially provide a stable interface for clinical applications.

Cullen has a primary appointment in the Department of Neurosurgery in the Perelman School of Medicine, with a secondary appointment in the Department of Bioengineering in the School of Engineering and Applied Science, and an appointment in the Corporal Michael J. Crescenz VA Medical Center in Philadelphia.

Yale Cohen and Douglas Smith Awarded 2020 Penn Medicine Awards of Excellence

Yale Cohen, Ph.D.
Douglas H. Smith, M.D.

The Perelman School of Medicine has announced the winners of the 2020 Penn Medicine Awards of Excellence. The Office of the Dean says:

“These awardees exemplify our profession’s highest values of scholarship, teaching, innovation, commitment to service, leadership, professionalism and dedication to patient care. They epitomize the preeminence and impact we all strive to achieve. The awardees range from those at the beginning of their highly promising careers to those whose distinguished work has spanned decades.

Each recipient was chosen by a committee of distinguished faculty from the Perelman School of Medicine or the University of Pennsylvania. The contributions of these clinicians and scientists exemplify the outstanding quality of patient care, mentoring, research, and teaching of our world-class faculty.”

Two faculty members affiliated with Penn Bioengineering are among this year’s recipients.

Yale Cohen, PhD, Professor of Otorhinolaryngology with secondary appointments in Neuroscience and Bioengineering, is the recipient of the Jane M. Glick Graduate Student Teaching Award. Cohen is an alumnus of the Penn Bioengineering doctoral program and is currently the department’s Graduate Chair.

“Dr. Cohen’s commitment to educating and training the next generation of scientists exemplifies the type of scientist and educator that Jane Glick represented. His students value his highly engaging and supportive approach to teaching, praising his enthusiasm, energy, honesty, and compassion.”

Douglas H. Smith, MD, Robert A. Groff Endowed Professor of Research and Teaching in Neurosurgery and member of the Penn Bioengineering Graduate Group, is the recipient of this year’s William Osler Patient Oriented Research Award:

“Dr. Smith is the foremost authority on diffuse axonal injury (DAI) as the unifying hypothesis behind the short- and long-term consequences of concussion.  After realizing early in his career that concussion, or mild traumatic brain injury (TBI), was a much more serious event than broadly appreciated, Dr. Smith and his team have used computer biomechanical modeling, in vitro and in vivo testing in parallel with seminal human studies to elucidate mechanisms of concussion.”

Read the full story in Penn Medicine Communications.

Penn Launches Region’s First Center for Translational Neuromodulation

Penn’s brainSTIM center will study neuromodulation to repair and enhance human brain function

Penn Medicine has launched a new center to study the brain, one of the most complex systems in the body:

The Penn Brain Science, Translation, Innovation, and Modulation (brainSTIM) Center brings together a team of leading neuroscientists, neurologists, psychiatrists, psychologists, and engineers at Penn using neuromodulation techniques to research, repair, and enhance human brain function—the first translational center of its kind in the region.

Among the key faculty involved in this new center is J. Peter Skirkanich Professor of Bioengineering Danielle Bassett. Bassett’s Complex Systems Lab studies biological, physical, and social systems by using and developing tools from network science and complex systems theory. Bassett, along with Assistant Professor of Psychiatry Desmond Oathes, will work to:

understand how TMS [i.e. transcranial magnetic stimulation] might improve working memory in healthy adults and those with ADHD by combining network control theory (a set of concepts and principles employed in engineering), magnetic stimulation of the brain, and functional brain imaging.

Read more at Penn Medicine News.