Noordergraaf and Blair Student Scholars Share Their Summer 2022 Research

Each year, the the Department of Bioengineering seeks exceptional candidates to conduct summer research in bioengineering with the support of two scholarships: the Abraham Noordergraaf Student Summer Bioengineering Research Fund and the Blair Undergraduate Research Fund in the Department of Bioengineering. These scholarships provide a living stipend for students to conduct research on campus in a Penn research lab under the mentorship of a faculty member. The Abraham Noordergraaf Student Summer Bioengineering Research Fund provides financial support for undergraduate or graduate summer research opportunities in bioengineering with a preference for study in the area of cardiovascular systems. Dr. Noordergraaf, who died in 2014, was a founding member and first chair of Penn Bioengineering. The Blair Undergraduate Research Fund in the Department of Bioengineering supports three to five undergraduate research scholars each year with the support of Dr. James C. Blair II. After a competitive round of proposals, the following six scholars were chosen for the Summer 2022 semester. Keep reading below for the research abstracts and bios of the awardees.

The Blair Undergraduate Research Fund in the Department of Bioengineering (Blair Scholars)

Ella Atsavapranee

Student: Ella Atsavapranee (BE Class of 2023)

PI: Michael J. Mitchell, J. Peter and Geri Skirkanich Assistant Professor of Innovation, Bioengineering

“Lipid nanoparticle-mediated delivery of RAS protease to inhibit cancer cell growth”

Mutations in RAS, a family of proteins found in all human cells, drive a third of cancers, including many pancreatic, colorectal, and lung cancers. However, there are still no therapies that can effectively prevent RAS from causing tumor growth. Recently, a protease was engineered to specifically degrade active RAS, offering a promising new tool for treating these cancers. However, many protein-based therapies still cannot be effectively delivered to patients. Lipid nanoparticles (LNPs), which were used in the Pfizer-BioNTech and Moderna COVID-19 vaccines, have emerged as a promising platform for safe and effective delivery of both nucleic acids and proteins. We formulated a library of LNPs using different cationic lipids. We characterized the LNPs by size, charge, and pKa, and tested their ability to deliver fluorescently labeled protease. The LNPs were able to encapsulate and deliver a RAS protease, successfully reducing proliferation of colon cancer cells.

Ella is a senior from Maryland studying bioengineering and chemistry. She works in Dr. Michael Mitchell’s lab, developing lipid nanoparticles to deliver proteins that reduce cancer cell proliferation. She has also conducted research on early-stage cancer detection and therapy monitoring (at Stanford University) and drug delivery across the blood-brain barrier for neurodegenerative diseases (at University of Maryland). She is passionate about translational research, science communication, and promoting diversity in STEM.

Chiadika Eleh

Student: Chiadika Eleh (BE and CIS Class of 2024)

PI: Eric J. Brown, Associate Professor of Cancer Biology, Perelman School of Medicine

“Investigating Viability in ATR and WEE1 Inhibitor Treated Ovarian Cancer Cells”

High-grade serous ovarian cancers (HGSOCs) are an aggressive subtype of ovarian cancer, accounting for up to 80% of all ovarian cancer-related deaths. More than half of HGSOCs are homologous recombination deficient; thus, they lack a favorable response when treated with common chemotherapeutic trials. Therefore, new treatment strategies must be developed to increase the life expectancy and quality of life of HGSOC patients. To address the lack of effective treatment options, the Brown Lab is interested in combining ATR and WEE1 inhibition (ATRi/WEE1i) to target HGSOC cells. It has previously been shown that low-dose ATRi/WEE1i is an effective treatment strategy for CCNE1-amplified ovarian cancer-derived PDX tumors (Xu et al., 2021, Cell Reports Medicine). Therefore, the next step is to characterize the HGSOC-specific response to ATRi/WEE1i treatment. This project aims to characterize the viability phenotype of ovarian cancer (OVCAR3) cells in the presence of ATRi/WEE1i in both single and combination treatments. With further research, Eleh hopes to prove the hypothesis low-dose combination ATRi/WEE1i treatment will result in the synergistic loss of viability in OVCAR3 cells. This goal will be achieved through the treatment of OVCAR3 cells with ranging doses of ATRi and Wee1i over 24 and 48 hour time intervals. We hope that this data will help set a treatment baseline that can be used for all OVCAR30-based viability experiments in the future.

Chiadika Eleh is a Bioengineering and Computer Science junior and a member of Penn Engineering’s Rachleff Scholar program. As a Blair Scholar, she worked in Dr. Eric Brown’s cancer biology lab, where she studied cell cycle checkpoint inhibitors as a form of cancer treatment.

Gloria Lee

Student: Gloria Lee (BE and PHYS Class of 2023)

PI: Yi Fan, Associate Professor of Radiation Oncology, Perelman School of Medicine, and member of the Penn Bioengineering Graduate Group

“Tbc1d2b regulates vascular formation during development and tissue repair after ischemia”

The mechanisms behind endothelial cells forming blood vessels remains unknown. We have identified Tbc1d2b as a protein that is integral to the regulation of vascular formation. In order to investigate the role of Tbc1d2b in tubule formation, fibrin gel bead assays will be conducted to evaluate how the presence of Tbc1d2b is required for angiogenesis. Fibrin gel bead assays simulate the extracellular matrix environment to support the in vitro development of vessels from human umbilical vein endothelial cells (HUVEC) coated on cytodex beads. In order to confirm the success of angiogenesis, immunostaining for Phalloidin and CD31 will be conducted. After confirmation that fibrin gel bead assays can produce in vitro tubules, sgRNA CRISPR knockout of Tbc1d2b will be performed on HUVEC cells which will then be used to conduct more fibrin gel bead assays. We hypothesize that HUVEC with the Tbc1d2b knockout phenotype will be unable to form tubules while wild type HUVEC will be able to.

Gloria Lee is a rising senior studying Bioengineering and Physics in the VIPER program from Denver, Colorado. Her research in Dr. Yi Fan’s lab focuses on the role that proteins play in cardiovascular tubule formation.

Abraham Noordergraaf Student Summer Bioengineering Research Fund (Noordergraaf Fellows)

Gary Lin

Student: Gary Lin (Master’s in MEAM Class of 2023)

PI: Michelle J. Johnson, Associate Professor in Physical Medicine and Rehabilitation, Perelman School of Medicine, and in Bioengineering

“Development and Integration of Dynamically Modulating Control Systems in the Rehabilitation Using Community-Based Affordable Robotic Exercise System (Rehab CARES)”

As the number of stroke patients requiring rehabilitative care continues to increase, strain is being put onto the US health infrastructure which already has a shortage of rehabilitation practitioners. To help alleviate this pressure, a cost-effective robotic rehabilitative platform was developed to increase access to rehabilitative care. The haptic TheraDrive, a one-degree of freedom actuated hand crank that can apply assistive and resistive forces, was modified to train pronation and supination at the elbow and pinching of the fingers in addition to flexion and extension of the elbow and shoulder. Two controllers were created including an open-loop force controller and a closed-loop proportional-integral (PI) with adaptive control gains based on subject performance in therapy-game tasks as well as galvanic skin response. Stroke subjects (n=11) with a range of cognitive and motor impairment completed 4 therapy games in both adaptive and non-adaptive versions of the controllers (n=8) while measuring force applied on the TheraDrive handle. Resulting normalized average power versus Upper Extremity Fugl-Meyer (UE-FM) and Montreal Cognitive Assessment (MoCA) correlation analyses showed that power was strongly correlated with UE-FM in 2 of the conditions and moderately correlated with the other 6 while MoCA was moderate correlated to 2 of the conditions and weakly correlated to the rest. Mann-Whitney U-tests between adaptive and non-adaptive versions of each therapy game showed no significant differences with regards to power between controller types (p<0.05).

Gary is a master’s student in the School of Engineering studying Mechanical Engineering and Applied Mechanics with a concentration in Robotic and Mechatronic systems. His research primarily focuses on developing affordable rehabilitation robotics for use in assessment and game-based therapies post neural injury. Many of his interests revolve around the design of mechatronic systems and the algorithms used to control them for use in healthcare spaces.

Priya Shah

Student: Priya Shah (BE Class of 2024)

PI: Alex J. Hughes, Assistant Professor in Bioengineering

“Optogenetic Control of Developing Kidney Cells for Future Treatment of End-Stage Renal Disease”

This project sought to build from prior research in the Hughes Lab on the geometric and mechanical consequences of kidney form on cell and tissue-scale function. While the developmental trajectory of the kidney is well understood, little is currently known about many factors affecting nephron progenitor differentiation rate. Insufficient differentiation of nephron progenitor cells during kidney formation can result in lower nephron number and glomerular density, which is a risk factor for progression to end-stage renal disease later in life. Prior studies indicated that the amount of nephron differentiation – and thus function of the adult kidney – is correlated to the packing of ureteric tubule tips present at the surface of the kidney. Building off of research conducted in the Bugaj Lab, we found that inserting an optogenetic construct into the genome of human embryonic kidney (HEK) cells allowed us to manipulate the contraction of those cells through exposing them to blue light. Manipulating the contraction of the cells allows for the manipulation of the packing of ureteric tubule tips at the kidney surface. We used a lentiviral vector to transduce HEK293 cells with the optogenetic construct and witnessed visible contraction of the cells when they were exposed to blue light. Future work will include using CRISPR-Cas9 to introduce the optogenetic construct into IPS cells.

Priya is a junior studying bioengineering and had the opportunity to work on manipulating developing kidney cells using an optogenetic construct in the Hughes Lab this summer. She is thrilled to continue this research throughout the coming school year. Outside of the lab, Priya is involved with the PENNaach dance team and the Society of Women Engineers, as well as other mentorship roles.

Cosette Tomita

Student: Cosette Tomita (Master’s in MEAM Class of 2023)

PI: Mark Anthony Sellmyer, Assistant Professor, Radiology, Perelman School of Medicine and member of the Penn Bioengineering Graduate Group

“Expression and Characterization of an Anti-Aβ42 scFv”

Background: Amyloid Beta (Aβ42) fibrils contribute to the pathology of Alzheimer’s Disease. Numerous monoclonal antibodies have been developed against Aβ42. In this study we have designed and expressed a short chain variable fragment specific to Aβ42 (Anti-Aβ42 scFv). To characterize our anti-Aβ42 scFv we have performed structural analysis using transmission electron microscopy (TEM) and binding kinetics using microscale thermophoresis (MST) compared to commercially available antibodies 6E10, Aducanumab, and an IgG isotype control. The goal of this study is to determine if labeling densities and binding constants for Aducanumab and anti-Aβ42 scFv are not significantly different.

Method: To characterize Aβ42 fibril associated antibodies we used negative stain TEM. Aβ42 fibrils were stained on a glow discharged copper grid, and incubated with gold conjugated anti-Aβ42 scFv, 6E10—which binds all Aβ species, aducanumab, or IgG isotype control. Labeling densities were calculated as the number of fibril-associated gold particles per 1 μm2 for each image. Next, we used microscale thermophoresis determine the binding kinetics. Antibodies or anti-Aβ42 scFv were labeled with Alexa Fluor-647 and unlabeled Aβ42 was titrated in a serial dilution over 16 capillaries. The average fluorescence intensity was plotted against the antibody or scFv concentration and the curves were analyzed using the GraphPad Prism software to calculate the dissociation constant (KD) values.

Results: We found a significant difference, tested with a one-way ANOVA (P <0.0001), in gold particle associated Aβ fibrils per 1 μm2 between anti-Aβ42 scFv, 6E10, aducanumab, and IgG isotype control. Further analysis of aducanumab and 6CO3 with unpaired student t-test indicates significant differences in fibril associated gold particles between aducanumab vs. 6E10 (P=0.0003), Aducanumab vs. Isotype control (P <0.0001), anti-Aβ42 scFv vs 6E10 (p=0.0072), and anti-Aβ42 scFv vs Isotype Control (P=0.0029) with no significant difference in labeling densities between Aducanumab and anti-Aβ42 scFv. The expected KD values from MST were 1.8μM for Aducanumab and anti-Aβ42 scFv, 10.3nM for 6E10 and no expected binding for the isotype control. The experimental KD values for anti-Aβ42 scFv and 6E10 are 0.1132μM and 1.467μM respectively. The KD value for Isotype control was undetermined, as expected, however, the KD for Aducanumab was undetermined due to suboptimal assay conditions. Due to confounding variables in the experimental set up such as the use of Aβ1-16 compared to Aβ42 and the use of different fluorophores—5-TAMRA, Alexa Fluor 647 or FITC— the experimental KD values were off by several orders of magnitude.

Conclusion: We have illustrated similar labeling densities between Aducanumab and our anti-Aβ42 scFv. In the future, we will further optimize the MST assay conditions and compare the KD values obtained by MST with other techniques such as surface plasma resonance.

Cosette was born and raised in Chicago land area. Go Sox! She attended University of Missouri where she majored in Chemistry and Biology. She synthesized sigma-2 radiotracers and developed advanced skills in biochemical techniques in Dr. Susan Lever’s lab.  After graduation, she moved to NJ to work at Lantheus, a radiopharmaceutical company. She missed academia and the independence of program and project development, so she came to work at the Penn Cyclotron facility before entering the Bioengineering master’s program.

Konrad Kording’s CENTER is Part of a New NIH Education Initiative on Scientific Rigor

by Melissa Pappas

Konrad Kording (Photo by Eric Sucar)

In 2005, John Ioannidis published a bombshell paper titled “Why Most Published Research Findings Are False.” In it, Ioannidis argued that a lack of scientific rigor in biomedical research — such as poor study design, small sample sizes and improper assessment of the significance of data— meant that a large percentage of experiments would not return the same results if they were conducted again.

Since then, researchers’ awareness of this “replication crisis” has grown, especially in fields that directly impact the health and wellbeing of people, where lapses in rigor can have life-or-death consequences. Despite this attention and motivation, however, little progress has been made in addressing the roots of the problem. Formal training in rigorous research practices remains rare; while mentors advise their students on how to properly construct and conduct experiments to produce the most reliable evidence, few educational resources exist to support them.

To address this discrepancy, the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (NIH), has launched the Initiative to Improve Education in the Principles of Rigorous Research.

Konrad Kording, a Penn Integrates Knowledge Professor with appointments in the Departments of Bioengineering and Computer and Information Science in Penn Engineering and the Department of Neuroscience in Penn’s Perelman School of Medicine, has been awarded one of the initiative’s first five grants.

“The replication crisis is real,” says Kording. “I’ve tried to replicate the research of others and failed. I’ve reanalyzed my own data and found major mistakes that needed to be corrected. I was never properly taught how to do rigorous science, and I want to improve that for the next generation.”

Read the full story in Penn Engineering Today.

Konrad Kording on the Future of Brain-Computer Interfaces

Konrad Kording (Photo by Eric Sucar)

Though the technology for brain-computer interfaces (or BCI’s) has existed for decades, recent strides have been made to create BCI devices which are safer, smaller, and more effective. Konrad Kording, Nathan Francis Mossell University Professor in Bioengineering, Neuroscience, and Computer and Information Science, helps to elucidate the potential future of this technology in a recent feature in Wired. In the article, he discusses the “invasive” aspects of previous BCI technology, in contrast to recent innovations, such as a new device by Synchron, which do not require surgery and are consequently much less risky:

“The device, called a Stentrode, has a mesh-like design and is about the length of a AAA battery. It is implanted endovascularly, meaning it’s placed into a blood vessel in the brain, in the region known as the motor cortex, which controls movement. Insertion involves cutting into the jugular vein in the neck, snaking a catheter in, and feeding the device through it all the way up into the brain, where, when the catheter is removed, it opens up like a flower and nestles itself into the blood vessel’s wall. Most neurosurgeons are already up to speed on the basic approach required to put it in, which reduces a high-risk surgery to a procedure that could send the patient home the very same day. ‘And that is the big innovation,” Kording says.

Read “The Age of Brain-Computer Interfaces Is on the Horizon” in Wired.

Kevin Johnson Appointed Senior Fellow at Penn LDI

Kevin B. Johnson, M.D., M.S.

Congratulations to Kevin B. Johnson, David L. Cohen University Professor, on his recent appointed as a Senior Fellow in the Leonard Davis Institute of Health Economics at the University of Pennsylvania (Penn LDI). Johnson, an expert in health care innovation and health information technology, holds appointments in Biostatistics, Epidemiology and Informatics in the Perelman School of Medicine and Computer and Information Science in the School of Engineering and Applied Science. He also holds secondary appointments in Bioengineering, Pediatrics, and in the Annenberg School of Communication and is Vice President for Applied Informatics in the University of Pennsylvania Health System.

Penn LDI is Penn’s hub for health care delivery, health policy, and population health, we connect and amplify experts and thought-leaders and train the next generation of researchers. Johnson joins over 500 Fellows from across all of Penn’s schools, the University of Pennsylvania Health System, and the Children’s Hospital of Philadelphia. Johnson brings expertise in Health Care Innovation, Health Information Technology, Medication Adherence, and Social Media to his new fellowship and has extensively studied healthcare informatics with the goal of improving patient care.

Learn more about Penn LDI on their website.

Learn more about Johnson’s research on his personal website.

Kevin Johnson: Informatics Evangelist

by Ebonee Johnson

Kevin Johnson is used to forging his own path in the fields of healthcare and computer science.

A picture of Johnson as a child, from his children’s book “I’m a Biomedical Expert Now!”

If you ask him to locate his niche within these fields, Johnson, David L. Cohen and Penn Integrates Knowledge (PIK) Professor with appointments in Penn Engineering and the Perelman School of Medicine, would say “informatics.” But that doesn’t tell the whole story of the board-certified pediatrician, who has dedicated his career to innovations in how patients’ information is created, documented and shared, all with the goal of improving the quality of healthcare they receive.

Informatics, the study of the structure and behavior of interactions between natural and computational systems, is an umbrella term. Within it, there’s bioinformatics, which applies informatics to biology, and biomedical informatics, which looks at those interactions in the context of healthcare systems. Finally, there is clinical informatics, which further focuses on the settings where healthcare is delivered, and where Johnson squarely places himself.

“But you can just call it ‘informatics,’” says Johnson. “It will be easier.”

He mainly studies how computational systems can improve ambulatory care — sometimes known as outpatient care, or the kind of care hospitals give to patients without admitting them — in real time. If you’ve ever heard your doctor complain about the amount of time it takes them to input the information they get from you during your visit, or wondered why they need to capture this information during the visit in the first place, these are some of the questions Johnson is investigating.

“We’re taking care of patients but we’re getting frustrated by things that we thought these new computers should be able to fix,” says Johnson.” I think there’s a very compelling case for using engineering principles to reimagine electronic health records.”

Read the full story in Penn Engineering Today.

Kevin Johnson is the David L. Cohen University of Pennsylvania Professor in the Departments of Biostatistics, Epidemiology and Informatics and Computer and Information Science. As a Penn Integrates Knowlegde (PIK) University Professor, Johnson also holds appointments in the Departments of Bioengineering and Pediatrics, as well as in the Annenberg School of Communication. Johnson is the Vice President for Applied Informatics for the University of Pennsylvania Health System and has been elected to the American College of Medical Informatics (2004), the Academic Pediatric Society (2010), the National Academy of Medicine (Institute of Medicine) (2010), and the International Association of Health Science Informatics (2021).

Kevin Johnson Named AIMBE Fellow

Kevin B. Johnson, MD, MS

Kevin B. Johnson, David L. Cohen University Professor in Biostatistics, Epidemiology and Informatics and in Computer and Information Science, has been elected to the 2022 Class of the American Institute for Medical and Biological Engineering (AIMBE) Fellows. Johnson joined the Penn faculty in 2021. He also holds secondary appointments in Bioengineering, in Pediatrics, and in the Annenberg School for Communication, and is the Vice President for Applied Informatics for the University of Pennsylvania Health System.

Election to the AIMBE College of Fellows is among the highest professional distinctions accorded to a medical and biological engineer. College membership honors those who have made outstanding contributions to “engineering and medicine research, practice, or education” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of medical and biological engineering, or developing/implementing innovative approaches to bioengineering education.”

Johnson was nominated, reviewed, and elected by peers and members of the AIMBE College of Fellows for his pioneering discoveries in clinical informatics, leading to advances in data acquisition, medication management, and information aggregation in medical settings.

A formal induction ceremony was held during AIMBE’s 2022 Annual Event on March 25, 2022. Johnson was inducted along with 152 colleagues who make up the AIMBE Fellow Class of 2022. For more information about the AIMBE Annual Event, please visit www.aimbe.org.

Read Johnson’s AIMBE election press release here. Find the full list of 2022 Fellows here.

Vijay Balasubramanian Discusses Theoretical Physics in Quanta Magazine

Cathy and Marc Lasry Professor Vijay Balasubramanian at Penn’s BioPond.

In an interview with Quanta Magazine, Vijay Balasubramanian discusses his work as a theoretical physicist, noting his study of the foundations of physics and the fundamentals of space and time. He speaks of the importance of interdisciplinary study and about how literature and the humanities can contextualize scientific exploration in the study of physics, computer science, and neuroscience.

Balasubramanian is Cathy and Marc Lasry Professor in the Department of Physics and Astronomy in the Penn School of Arts and Sciences and a member of the Penn Bioengineering Graduate Group.

Read “Pondering the Bits That Build Space-Time and Brains” in Quanta Magazine.

Kevin Johnson Discusses the Future of the Electronic Health Record

Kevin B. Johnson, M.D., Ph.D.

Kevin B. Johnson, M.D., M.S., was featured in Cincinnati Children’s Hospital’s “Envisioning Our Future for Children” speaker series, discussing “the evolution of the EHR and its future directions.” An electronic health record, or EHR, is a digital record of a patient’s chart, recording health information and data, coordinating orders, tracking results, and providing patient support. Johnson “predicts a new wave of transformation in digital health technologies that could make rapid progress” in several areas of medicine, including reducing cost and improving patience outcomes. Johnson is Vice President for Applied Informatics at the University of Pennsylvania Health System and the David L. Cohen University Professor with appointments in Biostatistics, Epidemiology and Informatics and Computer and Information Science and secondary appointments in the Annenberg School for Communication, Pediatrics, and Bioengineering.

Read “What Will It Take to Make EHR a Partner Instead of a Burden?” in the Cincinnati Children’s Hospital Research Horizons blog. View Johnson’s seminar talk on the Envisioning Our Future website.

Penn Bioengineering Student Laila Barakat Norford Named Goldwater Scholar

Laila Barakat Norford (Class of 2023)

Five University of Pennsylvania undergraduates have received 2022 Goldwater Scholarships, including Laila Barakat Norford, a third year Bioengineering major from Wayne, Pennsylvania. Goldwater Scholarships are awarded to sophomores or juniors planning research careers in mathematics, the natural sciences, or engineering.

She is among the 417 students named 2022 Goldwater Scholars from the 1,242 students nominated by 433 academic institutions in the United States, according to the Barry Goldwater Scholarship & Excellence in Education Foundation. Each scholarship provides as much as $7,500 each year for as many as two years of undergraduate study.

Penn has produced 23 Goldwater Scholars in the past seven years and a total of 55 since Congress established the scholarship in 1986.

Laila Barakat Norford is majoring in bioengineering with minors in computer science and bioethics in Penn Engineering. As a Rachleff Scholar, Norford has been engaged in systems biology research since her first year. Her current research uses machine learning to predict cell types in intestinal organoids from live-cell images, enabling the mechanisms of development and disease to be characterized in detail. At Penn, she is an Orientation Peer Advisor, a volunteer with Advancing Women in Engineering and the Penn Society of Women Engineers, and a teaching assistant for introductory computer science. She is secretary of the Penn Band, plays the clarinet, and is a member of the Band’s Fanfare Honor Society for service and leadership. Norford registers voters with Penn Leads the Vote and canvasses for state government candidates. She is also involved in Penn’s LGBTQ+ community as a member of PennAces. Norford plans to pursue a Ph.D. in computational biology, aspiring to build computational tools to address understudied diseases and health disparities.

The students applied for the Goldwater Scholarship with assistance from Penn’s Center for Undergraduate Research and Fellowships.

Read about all five 2022 Penn Goldwater Scholars in Penn Today.

Konrad Kording Appointed Co-Director the CIFAR Learning in Machines & Brains Program

Konrad Kording, PhD (Photo by Eric Sucar)

Konrad Kording, Nathan Francis Mossell University Professor in Bioengineering, Neuroscience, and Computer and Information Sciences, was appointed the Co-Director of the CIFAR Program in Learning in Machines & Brains. The appointment will start April 1, 2022.

CIFAR is a global research organization that convenes extraordinary minds to address the most important questions facing science and humanity. CIFAR was founded in 1982 and now includes over 400 interdisciplinary fellows and scholars, representing over 130 institutions and 22 countries. CIFAR supports research at all levels of development in areas ranging from Artificial Intelligence and child and brain development, to astrophysics and quantum computing. The program in Learning in Machines & Brains brings together international scientists to examine “how artificial neural networks could be inspired by the human brain, and developing the powerful technique of deep learning.” Scientists, industry experts, and policymakers in the program are working to understand the computational and mathematical principles behind learning, whether in brains or in machines, in order to understand human intelligence and improve the engineering of machine learning. As Co-Director, Kording will oversee the collective intellectual development of the LMB program which includes over 30 Fellows, Advisors, and Global Scholars. The program is also co-directed by Yoshua Benigo, the Canada CIFAR AI Chair and Professor in Computer Science and Operations Research at Université de Montréal.

Kording, a Penn Integrates Knowledge (PIK) Professor, was previously named an associate fellow of CIFAR in 2017. Kording’s groundbreaking interdisciplinary research uses data science to advance a broad range of topics that include understanding brain function, improving personalized medicine, collaborating with clinicians to diagnose diseases based on mobile phone data and even understanding the careers of professors. Across many areas of biomedical research, his group analyzes large datasets to test new models and thus get closer to an understanding of complex problems in bioengineering, neuroscience and beyond.

Visit Kording’s lab website and CIFAR profile page to learn more about his work in neuroscience, data science, and deep learning.