Training the Next Generation of Scientists on Soft Materials, Machine Learning and Science Policy

by Melissa Pappas

Developing new soft materials requires new data-driven research techniques, such as autonomous experimentation. Data regarding nanometer-scale material structure, taken by X-ray measurements at a synchrotron, can be fed into an algorithm that identifies the most relevant features, represented here as red dots. The algorithm then determines the optimum conditions for the next set of measurements and directs their execution without human intervention. Brookhaven National Laboratory’s Kevin Yager, who helped develop this technique, will co-teach a course on it as part of a new Penn project on Data Driven Soft Materials Research.

The National Science Foundation’s Research Traineeship Program aims to support graduate students, educate the STEM leaders of tomorrow and strengthen the national research infrastructure. The program’s latest series of grants are going toward university programs focused on artificial intelligence and quantum information science and engineering – two areas of high priority in academia, industry and government.

Chinedum Osuji, Eduardo D. Glandt Presidential Professor and Chair of the Department of Chemical and Biomolecular Engineering (CBE), has received one of these grants to apply data science and machine learning to the field of soft materials. The grant will provide five years of support and a total of $3 million for a new Penn project on Data Driven Soft Materials Research.

Osuji will work with co-PIs Russell Composto, Professor and Howell Family Faculty Fellow in Materials Science and Engineering, Bioengineering, and in CBE, Zahra Fakhraai, Associate Professor of Chemistry in Penn’s School of Arts & Sciences (SAS) with a secondary appointment in CBE, Paris Perdikaris, Assistant Professor in Mechanical Engineering and Applied Mechanics, and Andrea Liu, Hepburn Professor of Physics and Astronomy in SAS, all of whom will help run the program and provide the connections between the multiple fields of study where its students will train.

These and other affiliated faculty members will work closely with co-PI Kristin Field, who will serve as Program Coordinator and Director of Education.

Read the full story in Penn Engineering Today.

NSF Grant Will Support Research into Sustainable Manufacturing of 3D Solid-state Sodium-ion Batteries and Battery Workforce Training

by Melissa Pappas

The Department of Materials Science and Engineering’s Eric Detsi will lead a team of researchers, including MSE’s Eric Stach and Russell Composto, to develop more eco-friendly batteries that are based on sodium, rather than lithium.

Rechargeable lithium-ion batteries are becoming more ubiquitous, thanks to their use in emerging applications such as battery electric vehicles and grid-scale energy storage, however, these batteries are inefficiently manufactured and unsustainably sourced.

The typical battery cell consists of a separator membrane filled with liquid electrolyte, sandwiched between the negative anode and positive cathode. This design has several drawbacks, including a complex and energy-intensive manufacturing process, inefficient recycling, and increased safety risks as the liquid electrolyte is flammable and crystallization between the electrodes can lead to explosions. Finally, there are substantial geopolitical and environmental risks associated with the global supply chain for lithium-ion battery materials, such as cobalt and lithium.

The solid-state battery design addresses these issues. In solid-state batteries, the flammable liquid electrolyte is replaced by a solid electrolyte, making them safer and more energy efficient. Sodium-ion batteries address the issue of sustainable material sourcing as sodium is more abundant than lithium and cobalt, the materials used in lithium-ion batteries. Both solid-state lithium-ion batteries and sodium-ion batteries are very attractive for battery electric vehicles and grid-scale energy storage applications.

However, current solid-state battery designs also suffer from two major drawbacks: a low capacity for power storage and a resistance to charge transfer.

 To tackle the unsustainability in battery materials and the inefficiency of the current solid-state design, the National Science Foundation has awarded a team of Penn Engineers $2.7 Million in funding through its Future Manufacturing program. The team will be led by Eric Detsi, Stephenson Term Assistant Professor in the Department of Materials Science and Engineering (MSE), and will include Eric Stach, Professor in MSE and Director of the Laboratory for Research on the Structure of Matter, and Russell Composto, Howell Family Faculty Fellow and Professor in MSE with appointments in the Departments of Bioengineering and Chemical and Biomolecular Engineering.

“Our team will investigate a novel ‘Eco Manufacturing’ route to a 3D solid-state sodium-ion battery based on polymer solid-electrolytes,” says Detsi. “Our Eco Manufacturing approach will enable us to create batteries from only abundant elements, achieve ultralong battery cycle life, prevent sodium-dendrite-induced short-circuiting by using a ‘self-healing’ metal anode that can transform into liquid when the battery is operating, and efficiently recycle the battery’s anode and cathode. We will also improve the manufacturing process by using time- and energy-efficient processes including direct ink writing, solid-state conversion, and infiltration.”

Read the full story in Penn Engineering Today.

Penn Engineering Announces Four New Scholarly Chairs

Penn Engineering is pleased to announce the names of the recipients of four scholarly chairs: Drs. Danielle Bassett, Russell Composto, Boon Thau Loo and Mark Yim. These are all well-deserved honors and we celebrate the privilege of having each of these scholars among us. Two of the recipients, Drs. Bassett and Composto, are members of the Bioengineering Department.


Danielle Bassett has been named the J. Peter Skirkanich Professor of Bioengineering.

Danielle Bassett, Ph.D.

Dr. Bassett is a Professor in the department of Bioengineering at the School of Engineering and Applied Science. She holds a Ph.D. in Physics from the University of Cambridge and completed her postdoctoral training at the University of California, Santa Barbara, before joining Penn in 2013.

Dr. Bassett has received numerous awards for her research, including an Alfred P Sloan Research Fellowship, a MacArthur Fellowship, an Office of Naval Research Young Investigator Award, a National Science Foundation CAREER Award and, most recently, an Erdos-Renyi Prize in Network Science to name but a few. She has authored over 190 peer-reviewed publications as well as numerous book chapters and teaching materials. She is the founding director of the Penn Network Visualization Program, a combined undergraduate art internship and K-12 outreach program bridging network science and the visual arts.

Dr. Bassett’s research is in the area of complex systems and network science, with applications to biological, physical and social networks. She examines dynamic changes in network architecture, the interaction between topological properties of networks, and the influence of network topology on signal propagation and system function. To learn more about Dr. Bassett and her research, please visit her faculty profile.

The J. Peter Skirkanich Professorship was established to honor J. Peter “Pete” Skirkanich, an alumnus, trustee and member of the School of Engineering and Applied Science Board of Overseers who also served as co-chair of Penn Engineering’s “Making History through Innovation” capital campaign and was a member of the University’s “Making History” steering committee. His generous support for Penn Engineering paved the way for Skirkanich Hall.


Russell Composto has been named the Howell Family Faculty Fellow in the School of Engineering and Applied Science.

Russell J. Composto, Ph.D.

Dr. Composto is a Professor in the department of Materials Science and Engineering at the School of Engineering and Applied Science with secondary appointments in Bioengineering and Chemical and Biomolecular Engineering. He joined Penn in 1990 after an appointment as a Research Scientist at Brookhaven National Laboratory and a postdoctoral fellowship at the University of Massachusetts. He is an alumnus of Cornell University, where he received his doctoral degree in 1987.

Dr. Composto is a member of a number of centers and institutes and is the director of Research and Education in Active Coatings Technologies (REACT) for human habitat, a Partnerships for International Research and Education (PIRE) project funded by the National Science Foundation (NSF) and the University of Pennsylvania. Dr. Composto is a previous recipient of the Provost’s Award for Distinguished PhD Teaching and Mentoring. He also serves at the Associate Dean for Undergraduate Education at Penn Engineering.

Dr. Composto’s research is in the area of polymer science and biomolecular engineering. His interests extend to polymer surfaces and interfaces, adhesion and diffusion, and nanocomposite polymer blend and copolymer films. His biomaterials work centers around manipulating the surface of polymers to elicit control over protein adsorption, as well as cell adhesion, orientation, and function, and he has an active research program at the interface of polymer science and biomolecular engineering, which combines block copolymer self-assemble as a basis for orienting stiff biological molecules. To learn more about Dr. Composto and his research, please visit his faculty profile.

The Howell Family Faculty Fellow was established to provide financial support to a faculty member in the School of Engineering and Applied Science. This faculty fellow helped launch the dean’s strategic goal to increase the School’s number of named, endowed faculty positions.

Read the full article on the Penn Engineering blog.