2022 Penn Engineering Senior Design Project Competition Winners Announced

by Ebonee Johnson

Each year, Penn Engineering’s seniors present their Senior Design projects, a year-long effort that challenges them to test and develop solutions to real-world problems, to their individual departments. The top three projects from each department go on to compete in the annual Senior Design Competition, sponsored by the Engineering Alumni Society, which involves pitching projects to a panel of judges who evaluate their potential in the market.

This year’s panel included 42 judges, 21 in-person and 21 online, who weighed in on 18 projects. Each winning team received a $2,000 prize, generously sponsored by Penn Engineering alumnus Kerry Wisnosky.

This year, Bioengineering teams won two of the four interdepartmental awards.

Technology & Innovation Award

This award recognized the team whose project represents the highest and best use of technology and innovation to leverage engineering principles.

Team Modulo Prosthetics with Vijay Kumar, Dean of Penn Engineering, and Lyle Brunhofer, Chair of the 2022 Senior Design Competition Committee.

Winner: Team Modulo Prosthetics
Department: Bioengineering
Team Members: Alisha Agarwal, Michelle Kwon, Gary Lin, Ian Ong, Zachary Spalding
Mentor: Michael Hast
Instructors: Sevile Mannickarottu, David Meaney, Michael Siedlik
Abstract: Modulo Prosthetic is an adjustable, low-cost, thumb prosthetic with integrated haptic feedback that attaches to the metacarpophalangeal (MCP) joint of partial hand amputees and assists in activities of daily living (ADLs).

Leadership Award

This award recognizes the team which most professionally and persuasively presents their group project to incorporate a full analysis of their project’s scope, advantages and challenges, as well as addresses the research’s future potential and prospects for commercialization.

Team ReiniSpec with Vijay Kumar, Dean of Penn Engineering, and Lyle Brunhofer, Chair of the 2022 Senior Design Competition Committee.

Winner: Team ReiniSpec
Department: Bioengineering
Team Members: Caitlin Frazee, Caroline Kavanagh, Ifeoluwa Popoola, Alexa Rybicki, Michelle White
Mentor: JeongInn Park
Instructors: Sevile Mannickarottu, David Meaney, Michael Siedlik
Abstract: ReiniSpec is a redesigned speculum to improve the gynecological exam experience, increasing patient comfort with a silicone shell and using motorized arm adjustments to make it easily adjustable for each patient, while also incorporating a camera, lights, and machine learning to aid in better diagnosis by gynecologists.

Read the full list of competition winners in Penn Engineering Today.

 The 2022 Senior Design Competition Committee was chaired by Lyle Brunhofer, Penn Engineering Alumni Society Board Member and alumnus of Penn Bioengineering (BSE 2014, Master’s 2015).

Work for these and all Bioengineering senior design projects was conducted in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching lab for the Department of Bioengineering. Learn more about all eleven 2022 senior design projects in Bioengineering here.

2022 Penn Bioengineering Senior Design Teams Win Multiple Accolades

After a year of hybrid learning, Penn Bioengineering (BE) seniors were excited to return to the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace for Senior Design (BE 495 & 496), a two-semester course in which students work in teams to conceive, design and pitch their capstone projects in bioengineering. This year’s projects include tools for monitoring health, software to improve communication for the healthcare and supply chain industries, and devices to improve patient care for women and underrepresented minorities.

The year culminated in the annual Senior Design Expo on April 13 in the Singh Center for Nanotechnology, in which the students presented their pitches to a panel of alumni judges, followed by demonstrations in the George H. Stephenson  Foundation Educational Laboratory & Bio-MakerSpace which were open to the entire Penn community. This year’s winners of the Bioengineering Senior Design Competition were teams Chrysalis, Modulo Prosthetics, and ReiniSpec.

Team 11 (ReiniSpec) From L to R: Ifeoluwa Popoola, Alexa Rybicki, JeongInn Park (TA), Caitlin Frazee, Michelle White, Caroline Kavanagh (on laptop).

The three winning teams went on to compete in the annual interdepartmental Senior Design Competition sponsored by the Penn Engineering Alumni Society. BE took home two of the four interdepartmental awards: Team Modulo Prosthetics won the “Technology and Innovation Prize,” recognizing the project which best represents the highest and best use of technology and innovation to leverage engineering principles; and Team ReiniSpec won the “Leadership Prize,” which recognizes the team which most professionally and persuasively presents their group project to incorporate a full analysis of their project scope, advantages, and challenges, and addresses the commercialization and future potential of their research.

All BE teams were also required to submit their projects to local and national competitions, and were met with resounding success. “The creativity and accomplishment of this Senior Design class is really unparalleled,” said David Meaney, Solomon R. Pollack Professor in Bioengineering, Senior Associate Dean of Penn Engineering, and instructor for Senior Design. “The number of accolades received by these students, as well as the interest in transforming their ideas into real products for patients, reached a new level that makes us extremely proud.”

Keep reading for a full list of this year’s projects and awards.

Team 1 – MEViD

MEViD (Multichannel Electrochemical Viral Diagnostic) is a modular, low cost device that leverages electrochemistry to rapidly diagnose viral diseases from saliva samples.

Team members: Yuzheng (George) Feng, Daphne Kontogiorgos-Heintz, Carisa Shah, Pranshu Suri, & Rachel Zoneraich

Team 2 – MOD EZ-IO

MOD EZ-IO is a low-cost, novel intraosseous drill that uses force and RPM readings to alert the user via an LED when they have breached cortical bone and entered cancellous bone, guiding proper IO placement.

Team members: Gregory Glova, Kaiser Okyan, Patrick Paglia, Rohan Vemu, & Tshepo Yane

Team 3 – Harvest by Grapevine

Harvest by Grapevine is a user-centric software solution that merges social network communication and supply chain logistics to connect hospitals and suppliers under one unified platform.

Team members: Nicole Bedanova, Kerry Blatney, Blake Grimes, Brenner Maull, & Lukas Yancopoulos

Team 4 – CliniCall

CliniCall helps streamline and centralize communication channels, offering a real-time monitoring device that enables on-site/attending physicians to communicate with on-call physicians through a livestream of patients and data.

Team members: Neepa Gupta, Santoshi Kandula, Sue Yun Lee, & Ronil Synghal

Team 5 – PneuSonus

PneuSonus is a low-cost, user-friendly wearable strap that aids in detecting pediatric pneumonia by using frequency analysis of sound waves transmitted through the lungs to identify specific properties related to fluid presence, a valid indicator specific to pneumonia.

Team members: Iman Hossain, Kelly Lopez, Sophia Mark, Simi Serfati, & Nicole Wojnowski

Team 6 – Chrysalis

Chrysalis is a smart swaddle system comprising an electric swaddle and accompanying iOS application that comforts neonatal abstinence syndrome infants via stochastic resonance and maternal heartbeat vibrational patterns to reduce opioid withdrawal symptoms without pharmacological intervention or constant nurse oversight as well as streamlines the Eat, Sleep, Console documentation process for nurses.

Team members: Julia Dunn, Rachel Gu, Julia Lasater, & Carolyn Zhang

Team 7 – EquitOx

EquitOx is a revolutionized fingertip pulse oximeter designed for EMS that addresses racial inequality in medicine through the use of one-off tongue-calibrated SpO2 measurements.

Team members: Ronak Bhagia, Estelle Burkhardt, Juliette Hooper, Caroline Smith, & Kevin Zhao

Team 8 – Modulo Prosthetics

Modulo Prosthetic is an adjustable, low-cost, thumb prosthetic with integrated haptic feedback that attaches to the metacarpophalangeal (MCP) joint of partial hand amputees and assists in activities of daily living (ADLs).

Team members: Alisha Agarwal, Michelle Kwon, Gary Lin, Ian Ong, & Zachary Spalding

Team 9 – Cor-Assist By Cygno Technologies

COR-ASSIST by Cygno Technologies is a low-cost intra-aortic balloon enhancement that directly supports heart function by increasing cardiac output to 2.8L/min, at a much lower cost and bleeding risk than the current Impella cardiac assist device.

Team members: Francesca Cimino, Allen Gan, Shawn Kang, Kristina Khaw, & William Zhang

Team 10 – Pedalytics

Pedalytics Footwear is a rechargeable sandal that continuously monitors foot health and prevents diabetic foot ulcer formation by novelly tracking three key metrics indicative of ulceration, temperature, oxygen saturation, and pressure, and sending alerts to patients via the Pedalytics app when metric abnormalities are detected.

Team members: Samantha Brosler, Constantine Constantinidis, Quincy Hendricks, Ananyaa Kumar, & María José Suárez

Team 11 – ReiniSpec

ReiniSpec is a redesigned speculum to improve the gynecological exam experience, increasing patient comfort with a silicone shell and using motorized arm adjustments to make it easily adjustable for each patient, while also incorporating a camera, lights, and machine learning to aid in better diagnosis by gynecologists.

Team members: Caitlin Frazee, Caroline Kavanagh, Ifeoluwa Popoola, Alexa Rybicki, & Michelle White

Learn more about the 2022 Senior Design projects, including full abstracts and photo gallery, on the Stephenson Bio-MakerSpace website.

Watch all the 2022 project pitches on the BE Labs Youtube channel 2022 Senior Design Playlist:

Ossum Technologies Wins 2022 Y-Prize with Tool for Stabilizing Fractures

by Ebonee Johnson

Cerclage wire is used to stabilize pieces of fractured bone; the OsPass aims to make it easier for surgeons to put that wire into place.

The Y-Prize, a student startup competition based on technologies developed at Penn Engineering, is hosted by the Wharton School’s Mack Institute for Innovation Management, Penn Wharton Entrepreneurship and the Penn Center for Innovation each year. The team with the best pitch takes home $10,000 in investment funding.

This year’s winning team was Ossum Technologies, composed of Ananya Dewan, Hoang Le, Shiva Teerdhala, all students in the Vagelos Life Sciences and Management Program, Bioengineering major Karan Shah and Savan Patel, a student in the Jerome Fisher Program for Management & Technology.

The team utilized the steerable needle technology developed by Mark Yim, Asa Whitney Professor of Mechanical Engineering and Applied Mechanics, and colleagues. Yim’s device is a flexible needle that can be guided through soft materials with simple handheld controls, enabling users to pinpoint hard-to-reach areas that might otherwise require more complicated tools or robotic assistance.

Read the full story in Penn Engineering Today.

Week in BioE (May 31, 2019)

by Sophie Burkholder

Vector Flow Imaging Helps Visualize Blood Flow in Pediatric Hearts

A group of biomedical engineers at the University of Arkansas used a new ultrasound-based imaging technique called vector flow imaging to help improve the diagnosis of congenital heart disease in pediatric patients. The study, led by associate professor of biomedical engineering Morten Jensen, Ph.D., collaborated with cardiologists at the local Children’s Hospital in Little Rock to produce images of the heart in infants to help potentially diagnose congenital heart defects. Though the use of vector flow imaging has yet to be developed for adult patients, this type of imaging could possibly provide more detail about the direction of blood flow through the heart than traditional techniques like echocardiography do. In the future, the use of both techniques could provide information about both the causes and larger effects of heart defects in patients.

Using Stem Cells to Improve Fertility in Leukemia Survivors

One of the more common side effects of leukemia treatment in female patients is infertility, but researchers at the University of Michigan want to change that. Led by associate professor of biomedical engineering Ariella Shikanov, Ph.D., researchers in her lab found ways of increasing ovarian follicle productivity in mice, which directly relates to the development of mature eggs. The project involves the use of adipose-derived stem cells, that can be found in human fat tissue, to surround the follicles in an ovary-like, three-dimensional scaffold.  Because the radiation treatments for leukemia and some other cancers are harmful to follicles, increasing their survival rate with this stem cell method could reduce the rate of infertility in patients undergoing these treatments. Furthermore, this new approach is innovative in its use of a three-dimensional scaffold as opposed to a two-dimensional one, as it stimulates follicle growth in all directions and thus helps to increase the follicle survival rate.

Penn Engineers Look at How Stretching & Alignment of Collagen Fibers Help Cancer Cells Spread

Cancer has such a massive impact on people’s lives that it might be easy to forget that the disease originates at the cellular level. To spread and cause significant damage, individual cancer cells must navigate the fibrous extracellular environment that cells live in, an environment that Penn Engineer Vivek Shenoy has been investigating for years.

Shenoy is the Eduardo D. Glandt President’s Distinguished Professor with appointments in Materials Science and Engineering, Mechanical Engineering and Applied Mechanics, and Bioengineering. He is also the Director of the Center for Engineering MechanoBiology (CEMB), one of the NSF’s twelve Science and Technology Centers.

Shenoy’s most recent study on cancer’s mechanical environment was led by a postdoctoral researcher in his lab, Ehsan Ban. Paul Janmey, professor in Physiology and Bioengineering, and colleagues at Stanford University also contributed to the study. Shenoy also received the Heilmeier Award this March and delivered the Heilmeier Award Lecture in April.

Read the rest of this story on Penn Engineering’s Medium Blog.

Controlled Electrical Stimulation Can Prevent Joint Replacement Infections

Joint replacements are one of the most common kinds of surgery today, but they still require intense post-operative therapy and have a risk of infection from the replacement implant. These infections are usually due to the inflammatory response that the body has to any foreign object, and can become serious and life-threatening if left untreated. Researchers at the University of Buffalo Jacobs School of Medicine and Biomedical Sciences hope to offer a solution to preventing infections through the use of controlled electrical stimulation. Led by Mark Ehrensberger, Ph.D., Kenneth A. Krackow, M.D., and Anthony A. Campagnari, Ph.D., the treatment system uses the electrical signal to create an antibacterial environment at the interface of the body and the implant. While the signal does not prevent infections completely, these antibacterial properties will prevent infections from worsening to a more serious level. Patented as the Biofilm Disruption Device TM, the final product uses two electrode skin patches and a minimally invasive probe that delivers the electrical signal directly to the joint-body interface. The researchers behind the design hope that it can help create a more standard way of effectively treating joint replacement infections.

People and Places

TBx: Gabriel Koo, Ethan Zhao, Daphne Cheung, and Shelly Teng

For their senior design project, four bioengineering seniors Gabriel Koo, Ethan Zhao, Daphne Cheung, and Shelly Teng created a low-cost tuberculosis diagnostic that they called TBx. Using their knowledge of the photoacoustic effect of certain dyes, the platform the group created can detect the presence of lipoarabinomannan in patient urine. The four seniors presented TBx at the Rice360 Design Competition in Houston, Texas this spring, which annually features student-designed low-cost global health technologies.