How to Learn About a World-class Double Bass? Give it a CT

by Darcy Lewis  

The instrument imaging team, from left: Philadelphia Orchestra bassist Duane Rosengard; Peter Noël, PhD, director of CT Research at the Perelman School of Medicine; luthier Zachary S. Martin; Leening Liu, a PhD student in Noël’s Laboratory of Advanced Computed Tomography Imaging; and Mark Kindig.

When you’re an expert in medical CT imaging, two things are bound to happen, says Peter Noël, PhD, associate professor of Radiology and director of CT Research at the Perelman School of Medicine. One: You develop an insatiable curiosity about the inner workings of all kinds of objects, including those unrelated to your research. And two: Both colleagues and complete strangers will ask for your help in imaging a wide variety of unexpected items.

Over the course of his career, in between managing his own research projects, Noël has imaged diverse objects ranging from animal skulls to tree samples from a German forest, all in the name of furthering scientific knowledge. But none has intrigued him as much as his current extracurricular project: the first known attempt to perform CT imaging of some of the world’s finest string basses. 

The goal is to crack the code on what makes a world-class instrument. This knowledge could both increase the ability to better care for masterworks built between the 17th and 19th centuries, as well as providing insights into refining the building of new ones, including possibly shifting from older, scarcer European wood to the use of sustainably harvested U.S. wood.

That’s why Noël and Leening Liu, a PhD student in Noël’s Laboratory of Advanced Computed Tomography Imaging, have found themselves volunteering to run the basses through a Penn CT scanner occasionally, when they’re not developing next-generation CT technology. 

“We always learn something out of projects like this … the more appealing part is that medical research can also be applied to non-medical things,” Noël said. “We have the opportunity to take what we learn in medicine and use it for something else—in this case, moving the arts forward.”

Read the full story in Penn Medicine News.

Peter Noël is Assistant Professor of Radiology in the Perelman School of Medicine and member of the Penn Bioengineering Graduate Group.

Leening Liu is a Ph.D. student in Bioengineering. She is a member of the Laboratory for Advanced Tomography Imaging (LACTI) with research interests including clinical applications of spectral CT and spectral CT thermometry.

Who, What, Why: Lasya Sreepada on Decoding Alzheimer’s Disease

by Nathi Magubane

Lasya Sreepada, Ph.D. student in Bioengineering

Lasya Sreepada has always been fascinated by the brain and the underlying biology that shapes how people develop and age. “My curiosity traces back to observing differences between myself and my sister,” says Sreepada, a Ph.D. candidate in Bioengineering whose research unites efforts across Penn Medicine and Penn Engineering. “We grew up in the same environment but had remarkably different personalities, which led me to question what drove these differences and which brought me to the brain.”

Her academic journey began by applying medical imaging to understand how brain injuries sustained by professional athletes or military veterans impact their brain structure and chemistry over time. She became curious about how neurotrauma impacts aging and degeneration in the long term. Now, she leverages large, multimodal datasets to investigate neurodegenerative disease, with a particular focus on Alzheimer’s.

Read the full story in Penn Today.

Lasya Sreepada is a Bioengineering Ph.D. student at the Bioinformatics in Neurodegenerative Disease (BiND) Lab at Penn, advised by Corey McMillan and Dave Wolk, both Associate Professors in Neurology and members of the Bioengineering Graduate Group.

The Penn Forum on Quantum Systems (FoQuS), QUIEST’s First Inaugural Symposium, Hosts International Experts in Quantum Research

by Melissa Pappas

Dawn Bonnell gave the opening remarks of FoQuS.

Sometimes, nature’s smallest objects have the biggest impact. Take the quantum realm, which involves the building blocks of matter itself. 

Quantum science aims to understand the behavior of matter and energy at the scale of atoms and subatomic particles. Because particles frequently defy human intuition at this scale, the field likely offers great, untapped potential to solve some of our most complex issues.

“Bringing ‘quantum superstars’ from academia and industry to a space where scientists of all levels could interact, exchange ideas and gain inspiration is just one way we can foster collaboration in advancing the field and exploring new possibilities,” says Lee Bassett, Associate Professor in Electrical and Systems Engineering (ESE) and Director of the Center for Quantum Information, Engineering, Science and Technology (QUIEST).

Established in June 2023, QUIEST hosted its first symposium, The Penn Forum on Quantum Systems (FoQuS), last month, which reached over 150 attendees and included keynote speakers from across the country and globe. 

“The event was a wonderful success,” says Bassett. “External speakers appreciated being part of these discussions and seeing the exciting things happening at Penn. Penn faculty and students were thrilled to learn more about the state-of-the-art quantum research happening around the world in industry and in national labs.”

The forum’s goals were to connect researchers, raise awareness about regional, national and international efforts in quantum engineering and help guide research and education priorities for the QUIEST Center. 

Touching on all four research domains of the Center (Materials for QUIEST, Quantum Devices, Quantum Systems and QUIEST Impact), the forum left attendees, including faculty as well as graduate, undergraduate and high school students, with new inspiration for future research. 

Read the full story in Penn Engineering Today.

Dawn Bonnell, Henry Robinson Towne Professor in Materials Science and Engineering, Senior Vice Provost for Research, and member of the Penn Bioengineering Graduate Group, delivered opening remarks of FoQuS.

2024 Graduate Awards for Bioengineering Students

Congratulations to the 2024 Bioengineering student recipients of the annual Penn Engineering Graduate Student Awards! The awardees were honored in a ceremony on May 15, 2024, hosted by Dean Vijay Kumar and graduate program faculty leadership.

Master’s Student Awards:
Elizabeth Brown – Outstanding Service
Tianyu Cai – Outstanding Research
Ekta Singh – Outstanding Service

PhD Student Awards:
Dimitris Boufidis – Outstanding Service
Katherine Mossburg – Outstanding Service
Kelsey Swingle – Outstanding Teaching

Looking to AI to Solve Antibiotic Resistance

by Nathi Magubane

Cesar de la Fuente (left), Fangping Wan (center), and Marcelo der Torossian Torres (right). Fangping holds a 3D model of a unique ATP synthase fragment, identified by their lab’s deep learning model, APEX, as having potent antibiotic properties.

“Make sure you finish your antibiotics course, even if you start feeling better’ is a medical mantra many hear but ignore,” says Cesar de la Fuente of the University of Pennsylvania.

He explains that this phrase is, however, crucial as noncompliance could hamper the efficacy of a key 20th century discovery, antibiotics. “And in recent decades, this has led to the rise of drug-resistant bacteria, a growing global health crisis causing approximately 4.95 million deaths per year and threatens to make even common infections deadly,” he says.

De la Fuente, a Presidential Assistant Professor, and a team of interdisciplinary researchers have been working on biomedical innovations tackling this looming threat. In a new study, published in Nature Biomedical Engineering, they developed an artificial intelligence tool to mine the vast and largely unexplored biological data—more than 10 million molecules of both modern and extinct organisms— to discover new candidates for antibiotics.

“With traditional methods, it takes around six years to develop new preclinical drug candidates to treat infections and the process is incredibly painstaking and expensive,” de la Fuente says. “Our deep learning approach can dramatically reduce that time, driving down costs as we identified thousands of candidates in just a few hours, and many of them have preclinical potential, as tested in our animal models, signaling a new era in antibiotic discovery.” César de la Fuente holds a 3D model of a unique ATP synthase fragment, identified by his lab’s deep learning model, APEX, as having potent antibiotic properties. This molecular structure, resurrected from ancient genetic data, represents a promising lead in the fight against antibiotic-resistant bacteria.

These latest findings build on methods de la Fuente has been working on since his arrival at Penn in 2019. The team asked a fundamental question: Can machines be used to accelerate antibiotic discovery by mining the world’s biological information? He explains that this idea is based on the notion that biology, at its most basic level, is an information source, which could theoretically be explored with AI to find new useful molecules.

Read the full story in Penn Today.

Largest-Ever Antibiotic Discovery Effort Uses AI to Uncover Potential Cures in Microbial Dark Matter

by Eric Horvath

Credit: Georgina Joyce

Almost a century ago, the discovery of antibiotics like penicillin revolutionized medicine by harnessing the natural bacteria-killing abilities of microbes. Today, a new study co-led by researchers at the Perelman School of Medicine at the University of Pennsylvania suggests that natural-product antibiotic discovery is about to accelerate into a new era, powered by artificial intelligence (AI).

The study, published in Cell, the researchers used a form of AI called machine learning to search for antibiotics in a vast dataset containing the recorded genomes of tens of thousands of bacteria and other primitive organisms. This unprecedented effort yielded nearly one million potential antibiotic compounds, with dozens showing promising activity in initial tests against disease-causing bacteria.

“AI in antibiotic discovery is now a reality and has significantly accelerated our ability to discover new candidate drugs. What once took years can now be achieved in hours using computers” said study co-senior author César de la Fuente, PhD, a Presidential Assistant Professor in Psychiatry, Microbiology, Chemistry, Chemical and Biomolecular Engineering, and Bioengineering.

Nature has always been a good place to look for new medicines, especially antibiotics. Bacteria, ubiquitous on our planet, have evolved numerous antibacterial defenses, often in the form of short proteins (“peptides”) that can disrupt bacterial cell membranes and other critical structures. While the discovery of penicillin and other natural-product-derived antibiotics revolutionized medicine, the growing threat of antibiotic resistance has underscored the urgent need for new antimicrobial compounds.

In recent years, de la Fuente and colleagues have pioneered AI-powered searches for antimicrobials. They have identified preclinical candidates in the genomes of contemporary humans, extinct Neanderthals and Denisovans, woolly mammoths, and hundreds of other organisms. One of the lab’s primary goals is to mine the world’s biological information for useful molecules, including antibiotics.

Read the full story in Penn Medicine News.

How “Invitations” from Penn Medicine Restored Mammogram Completion Rates

by Frank Otto

The first few waves of COVID-19 slowed life across the United States, affecting everything from attending school to eating out for dinner and going on vacation. Segments of health care were also affected: Services that were not considered immediately crucial to fighting the virus were slowed or stopped during the pandemic’s first wave.  

But once Penn Medicine invited patients back to resume normal health care—including preventive care, like screenings for disease—there was some lag in numbers. 

“As we opened up to routine outpatient care, screening rates for situations when patients didn’t have symptoms were not returning back to normal,” said Mitchell Schnall, MD, PhD, FACR, a professor of Radiology, now the senior vice president for Data and Technology Solutions at Penn Medicine, and then the head of a team focused on the “resurgence” efforts to ease patients back into outpatient care. “Although a short delay in health screening is likely not going to cause long-term health problems, we were concerned whether screening rates would stay lower and lead to a long-term impact.”  

Read the full story in Penn Medicine News.

Mitchell Schnall is a member of the Penn Bioengineering Graduate Group.

Different Brain Structures in Females Lead to More Severe Cognitive Deficits After Concussion Than Males

by Kelsey Geesler

Top: Axons in female and male subject brains Bottom: damaged axons in male and female brains after injury (Credit: Penn Medicine)

Important brain structures that are key for signaling in the brain are narrower and less dense in females, and more likely to be damaged by brain injuries, such as concussion. Long-term cognitive deficits occur when the signals between brain structures weaken due to the injury. The structural differences in male and female brains might explain why females are more prone to concussions and experience longer recovery from the injury than their male counterparts, according to a preclinical study led by the Perelman School of Medicine at the University of Pennsylvania, published this week in Acta Neuropathologica.

Each year, approximately 50 million individuals worldwide suffer a concussion, also referred to as mild traumatic brain injury (TBI). However, there is nothing “mild” about this condition for the more than 15 percent of individuals who suffer persisting cognitive dysfunction, which includes difficulty concentrating, learning and remembering new information, and making decisions.

Although males make up the majority of emergency department visits for concussion, this has been primarily attributed to their greater exposure to activities with a risk of head impacts compared to females. In contrast, it has recently been observed that female athletes have a higher rate of concussion and appear to have worse outcomes than their male counterparts participating in the same sport.

“Clinicians have observed for a long time that females suffer from concussion at higher rates than males in the same sports, and that they take longer to recover cognitive function, but couldn’t explain the underlying mechanisms of this phenomenon,” said senior author Douglas Smith, MD, a professor of Neurosurgery and director of Penn’s Center for Brain Injury and Repair. “The variances in brain structures of females and males not only illuminate why this disparity exists, but also exposes biomarkers, such as axon protein fragments, that can be measured in the blood to determine injury severity, monitor recovery, and eventually help identify and develop treatments that help patients repair these damaged structures and restore cognitive function.”

Read the full story in Penn Medicine News.

Douglas H. Smith is a member of the Penn Bioengineering Graduate Group.

Artificial Intelligence to Accelerate Antibiotic Discovery

Using AI for discovery of new antibiotics.

The growing threat of antimicrobial resistance demands innovative solutions in drug discovery. Scientists are turning to artificial intelligence (AI) and machine learning (ML) to accelerate the discovery and development of antimicrobial peptides (AMPs). These short strings of amino acids are promising for combating bacterial infections, yet transitioning them into clinical use has been challenging. Leveraging novel AI-driven models, researchers aim to overcome these obstacles, heralding a new era in antimicrobial therapy.

A new article in Nature Reviews Bioengineering illuminates the promises and challenges of using AI for antibiotic discovery. Cesar de la Fuente, Presidential Assistant Professor in Microbiology and Psychiatry in the Perelman School of Medicine, in Bioengineering and Chemical and Biomolecular Engineering in the School of Engineering and Applied Science, and Adjunct Assistant Professor in Chemistry in the School of Arts and Sciences, collaborated with James J. Collins, Termeer Professor of Medical Engineering and Science at MIT, to provide an introduction to this emerging field, outlining both its current limitations and its massive potential.

In the past five years, groundbreaking work in the de la Fuente Lab has dramatically accelerated the discovery of new antibiotics, reducing the timeline from years to mere hours. AI-driven approaches employed in his laboratory have already yielded numerous preclinical candidates, showcasing the transformative potential of AI in antimicrobial research and offering new potential solutions against currently untreatable infections.

Recent advancements in AI and ML are revolutionizing drug discovery by enabling the precise prediction of biomolecular properties and structures. By training ML models on high-quality datasets, researchers can accurately forecast the efficacy, toxicity and other crucial attributes of novel peptides. This predictive power expedites the screening process, identifying promising candidates for further evaluation in a fraction of the time required by conventional methods.

Traditional approaches to AMP development have encountered hurdles such as toxicity and poor stability. AI models help overcome these challenges by designing peptides with enhanced properties, improving stability, efficacy and safety profiles, and fast-tracking the peptides’ clinical application.

While AI-driven drug discovery has made significant strides, challenges remain. The availability of high-quality data is a critical bottleneck, necessitating collaborative efforts to curate comprehensive datasets to train ML models. Furthermore, ensuring the interpretability and transparency of AI-generated results is essential for fostering trust and wider adoption in clinical settings. However, the future is promising, with AI set to revolutionize antimicrobial therapy development and address drug resistance.

Integrating AI and ML into antimicrobial peptide development marks a paradigm shift in drug discovery. By harnessing these cutting-edge technologies, researchers can address longstanding challenges and accelerate the discovery of novel antimicrobial therapies. Continuous innovation in AI-driven approaches is likely to spearhead a new era of precision medicine, augmenting our arsenal against infectious diseases.

Read “Machine learning for antimicrobial peptide identification and design” in Nature Reviews Bioengineering.

The de la Fuente Lab uses use the power of machines to accelerate discoveries in biology and medicine. The lab’s current projects include using AI for antibiotic discovery, molecular de-extinction, reprogramming venom-derived peptides to discover new antibiotics, and developing low-cost diagnostics for bacterial and viral infections. Read more posts featuring de la Fuente’s work in the BE Blog.

Brewing Brilliance

by Nathi Magubane & Ian Scheffler

Nader Engheta (left) and Firooz Aflatouni swap ideas over cups of tea.

According to Chinese legend, the first cup of tea was an accident. Shennong, a mythical emperor, boiled a pot of water, only for the wind to add a handful of leaves.

In Penn Engineering’s Department of Electrical and Systems Engineering (ESE), tea leaves likewise result in happy accidents.

Nader Engheta, H. Nedwill Ramsey Professor, regularly joins his colleague Firooz Aflatouni, associate professor and undergraduate chair in ESE, for a cup of tea in the latter’s office. “We talk about academic life,” says Engheta. “We talk about history, politics.” And, of course, science.

Engheta, who won the Benjamin Franklin Medal last year, is known for his groundbreaking contributions to the design of materials that interact with electromagnetic waves at tiny scales with unprecedented functionalities. More than a decade ago, the Department recruited Aflatouni, who specializes in the design of electronic and photonic chips, and Engheta became his mentor. “We come from different angles to the field of optics,” says Engheta.

Over tea, the two brew up new ideas. While perhaps not as directly inspired by teatime as James Watt, who famously experimented with kettles en route to inventing the steam engine, the pair nonetheless finds that ideas rise like the steam from their teacups. “It’s a pleasure to collaborate with Firooz,” says Engheta. “We love to see how we can bring our ideas together.” 

Read the full story in Penn Today.

Nader Engheta is H. Nedwill Ramsey Professor of Electrical and Systems Engineering at Penn Engineering, with secondary appointments in the departments of Bioengineering, Materials Science and Engineering, and Physics and Astronomy in the School of Arts & Sciences. Read more stories featuring Engheta in the BE Blog.