Strella Biotechnology Continues Scaling Up

Katherine Sizov (right) and Malika Shukurova (left) earned the 2019 President’s Innovation Prize for their startup, Strella Biotechnology.

“Fruit hacking” startup Strella Biotechnology, founded by students and faculty advisors from the School of Engineering and Applied Science (SEAS) and the School of Arts and Sciences (SAS), tackles food waste by monitoring fruit ripeness. No stranger to media coverage, Strella and co-founder Katherine Sizov have previously been spotlighted for receiving the 2019 President’s Innovation Prize, which included $100,000 of financial support, a $50,000 living stipend for both awardees, and a year of dedicated co-working and lab space at the Pennovation Center. 

Recently, Michael Birnbaum of the Washington Post spoke with Sizov about the hard work and flexibility it took to propel the company’s successful scaling endeavors: Strella is now monitoring 15 percent of all U.S. apples.  

“Sizov, 24, wants to eliminate food waste one fruit at a time. In central Washington, it was an effort that required almost as much quick footwork as the épée squad she captained as a championship fencer in college. One moment, she was trying to beam the sensor’s WiFi signal through the reception black hole of millions of apples, which cause transmission issues because of their high water content. The next, she was sitting down with laconic apple growers with orchards planted generations ago, trying to convince them she could help them avoid wasted fruit. By day’s end, she might be folding her 6-foot frame into the passenger seat of a rental car, balancing her laptop on her knees and trying to win over Silicon Valley investors on Zoom calls using skills she had picked up partly by watching YouTube tutorials.”

Read Michael Birnbaum’s Fighting food waste, one apple at a time” for more about Sizov’s motivation, background and process.

Strella Biotechnology was founded by Penn alumna Katherine Sizov (Bio 2019) and was initially developed in the George H. Stephenson Foundation Educational Laboratory, the biomakerspace and primary teaching lab of the Department of Bioengineering. Sizov and Penn Bioengineering alumna Malika Shukurova (BSE 2019) won a President’s Innovation Prize in 2019. Read more BE blog stories featuring Strella Biotechnology.

Penn’s 2021 iGEM Team Takes Home Multiple Prizes

Four of Penn’s 2021 iGEM team (left to right): Juliette Hooper, Grace Qian, Saachi Datta, and Gloria Lee.

The University of Pennsylvania’s 2021 iGEM team has been awarded several distinctions in this year’s highly competitive iGEM Competition. The International Genetically Engineered Machine Competition is the largest synthetic biology community and the premiere synthetic biology competition for both university and high school level students from around the world. Each year, hundreds of interdisciplinary teams of students combine molecular biology techniques and engineering concepts to create novel biological systems and compete for prizes and awards through oral presentations and poster sessions.

The Penn team’s project, “OptoReader,” is a combined light-simulation device and plate reader, which makes optogenetic experiments more powerful and accessible. The abstract reads:

“Metabolic engineering has the potential to change the world, and optogenetic tools can make metabolic engineering research easier by providing spatiotemporal control over cells. However, current optogenetic experiments are low-throughput, expensive, and laborious, which makes them inaccessible to many. To tackle this problem, we combined a light-stimulation device with a plate reader, creating our OptoReader. This device allows us to automate ~100 complex optogenetic experiments at the same time. Because it is open source and inexpensive, our device would make optogenetic experiments more efficient and available to all.”

Watch the team’s presentation on OptoReader here.

This year’s Penn team was mentored by Lukasz Bugaj, Assistant Professor in Bioengineering. In addition, the team was supported by Brian Chow, Associate Professor in Bioengineering. Chow has supported previous undergraduate iGEM teams at Penn, and was involved in the creation of the iGEM program during his time as a graduate student at MIT.

OptoReader took home the top prizes in three of the four categories in which it was nominated. These prizes include:

  • Best Foundational Advance (best in track)
  • Best Hardware (best from all undergraduate teams)
  • Best Presentation (best from all undergraduate teams)

They were also awarded a Gold Medal Distinction and were included in the Top 10 Overall (from all undergraduate teams, and the only team from the United States to make the top 10) and Top 10 Websites (from all undergraduate teams).

The awards were announced during iGEM’s online Jamboree Award Ceremony on November 14, 2021 (watch the full award ceremony here).

In addition to the outstanding awards recognition, OptoReader was also selected for an iGEM Impact Grant which awards teams $2,500 to continue development of their projects. This new initiative from the iGEM Foundation was announced earlier this year, and with the support of the Frederick Gardner Cottrell Foundation, is distributing a total of $225,000 in grant funds to 90 iGEM teams during the 2021 competition season. Learn more about the Impact Grant and read the full list of winning teams here.

Penn’s 2021 iGEM team was made up of an interdisciplinary group of women undergraduates from the School of Engineering and Applied Science (SEAS) and the School of Arts and Sciences (SAS):

  • Saachi Datta (B.A. in Biology and Religious Studies 2021)
  • Juliette Hooper (B.S.E. and M.S.E. in Bioengineering 2022)
  • Gabrielle Leavitt (B.S.E. in Bioengineering 2021 and current Master’s student in Bioengineering)
  • Gloria Lee (B.A. in Physics and B.S.E. in Bioengineering 2023)
  • Grace Qian (B.S.E. in Bioengineering 2023)
  • Lana Salloum (B.A. in Neuroscience 2022)

They were mentored by three doctoral students in Bioengineering: Will Benman (Bugaj Lab), David Gonzalez Martinez (Bugaj Lab), Gabrielle Ho (Chow Lab). Saurabh Malani, a graduate student in the Avalos Lab at Prince University, was also very involved in mentoring the team.

OptoReader

The graduate mentors were instrumental in quickly bringing the undergraduates up to speed on a diverse array of skills needed to accomplish this project including circuit design, optics, optogenetics, programming, and additive manufacturing. They then coached the team through building and testing prototypes, as well as accomplishing other objectives required for success at iGEM. These other objectives included establishing collaborations with other iGEM teams, performing outreach, and effectively communicating their project through a website and online presentations.

“This team and their work is outstanding,” said William Benman. “Not only did they sweep several awards, but they did it all with a small team and while working with technology they had no prior experience with. They created a device that not only increases accessibility to optogenetics but also allows optogenetic systems to interface directly with computer programs, allowing for completely new research avenues within the field. They are truly a remarkable group.”

Due to the COVID pandemic, the team operated virtually through the summer of 2020, and then continued in person in the summer of 2021 as the project progressed and more students returned to Penn’s campus. Upon return to campus, the work was conducted in both the Bugaj lab in the Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching laboratory in Penn Bioengineering and an interdisciplinary makerspace open to anyone at Penn. The team also collaborated with the Avalos Lab at Princeton University, which conducts research in the application of optogenetics to optimize production of valuable  chemicals in microbes.

“I’m beyond excited about this phenomenal showing from team Penn at the iGEM Jamboree awards ceremony,” said faculty mentor Lukasz Bugaj. “This is truly outstanding recognition for what the team has accomplished, and it wouldn’t have happened without essential contributions from everyone on the team.”

Brian Chow added that this achievement is “no small feat,” especially for a hardware project. “The iGEM competition leans toward genetic strain engineering, but the advances in the field made by these incredible students were undeniable,” he said.

Going forward, the team plans to publish a scientific article and file a patent application describing their device. “It’s clear that there is excitement in the scientific community for what our students created, and we’re excited to share the details and designs of their work,” said Bugaj.

Congratulations to all the team members and mentors of OptoReader on this incredible achievement! Check out the OptoReader project website and Instagram to learn more about their project.

This project was supported by the Department of Bioengineering, the School of Engineering and Applied Science, and the Office of the Vice Provost for Research (OVPR). 

Penn Bioengineering Senior Design Team Wins Hamlyn Symposium Prize

The winners of the Medical Robots for Contagious Disease Challenge Award for Best Application (L to R): Yasmina Al Ghadban, Phuong Vu, and Rob Paslaski.

Three recent Penn Bioengineering graduates took home the Best Application Award from the Medical Robotics for Contagious Disease Challenge, part of the three-month Hamlyn Symposium on Medical Robotics. Organized by the Hamlyn Centre at Imperial College, London, UK, in collaboration with the UK-RAS Network, the challenge involved “creating a 2-minute video of robotic or AI technology that could be used to tackle contagious diseases” in response to the current and potential future pandemics. Yasmina Al Ghadban, Rob Paslaski, and Phuong Vu were members of the Penn Bioengineering senior design team rUmVa who designed and built a cost-effective, autonomous robot that can quickly disinfect rooms by intelligently sanitizing high-touch surfaces and the air. The Best Application Award comes with a prize of £5,000.

The full Team rUmVa (L to R): Yasmina Al Ghadban, Rachel Madhogarhia, Phuong Vu, Jeong Inn Park, and Rob Paslaski.

Team rUmVa, which also included Bioengineering seniors Rachel Madhogarhia and Jeong Inn Park, also received a Berkman Opportunity fund grant from Penn Engineering and was one of three teams to win Penn Bioengineering’s Senior Design competition. Senior Design work is conducted every year on-site in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (which successfully reopened for in-person activities this Spring semester). Read the full list of Spring 2021 Senior Design Award Winners here.

rUmVa and the other challenge winners were honored during the Hamlyn Symposium’s virtual closing ceremony on July 29, 2021.

Read rUmVa’s abstract and final papers, along with those of all of the Penn Bioengineering Teams’, on the BE Labs Senior Design 2021 website. rUmVa’s presentation can be viewed on Youtube:

Strella Biotechnology Featured in Philly Mag

NextUp, a regular feature of Philadelphia Magazine that “highlights the local leaders, organizations and research shaping the Greater Philadelphia region’s life sciences ecosystem,” ran a profile of Philly-based agricultural startup Strella Biotechnology. Founded by Penn alumna Katherine Sizov (Bio 2019) and winner of a 2019 President’s Innovation Prize, Strella Biotech seeks to reduce food waste through innovative biosensors, and was initially developed in the George H. Stephenson Foundation Educational Laboratory, the biomakerspace and primary teaching lab of the Department of Bioengineering.

Sizov says the coronavirus pandemic has made the volatility of grocery stores’ offerings even more apparent. Last April, the Produce Marketing Association estimated that nearly $5 billion of fresh fruits and vegetables had gone to waste in the first month of the pandemic due to the complex supply chain’s inability to quickly redirect shipping and distribution. ‘In a way, I think COVID-19 has helped us realize how delicate and fragile supply chains are,’ she says. ‘We are working to create better, stronger supply chains that are economically and environmentally sustainable for everyone involved — researchers, growers, packagers, distributors, retailers, and consumers.'”

Read “NextUp: The Philly Startup Using Biosensors to Combat Food Waste and Improve Supply Chains” in Philly Mag.

Read more BE blog stories featuring Strella Biotechnology.

Bioengineering Senior Design 2021

Each Penn Bioengineering (BE) student’s undergraduate experience culminates in Senior Design, a two-semester capstone project in which student teams conceive, design, and develop a bioengineering project, whether a medical device, molecular biological therapeutic, or research tool. Projects are inherently interdisciplinary, and can involve biomaterials, electronics, mechanics, molecular biology, nanotechnology, and microfluidics. Research and development is supervised by BE faculty, lab staff, and graduate student TA’s and project managers, and work is conducted in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (which successfully reopened for in-person activities this Spring semester).

This year’s 11 teams included the variety and innovation we’ve come to expect from our outstanding students, ranging from devices which track medical conditions, such afib and POTS, to technology responding to our post-COVID world, such as a disinfecting robot and a kit to make telemedicine more effective. The year finished with presentations to alumni judges, and BE’s annual Demo Day (the only in-person demo day on the engineering campus this year) on April 15, 2021, in which students showcased their designs to faculty.

Several teams were highlighted for awards recognition.

  • Tula won the Grand Prize Award at the Weiss Tech House Senior Design Pitch competition, sponsored by Penn’s Weiss Tech House, as well as a Berkman Opportunity Fund grant from Penn Engineering. Tula’s members are Bioengineering student Shreya Parchure (BSE 2021 & MSE 2021), Mechanical Engineering student Miriam Glickman (BSE 2021 & MSE 2022), and Computer Science students Ebtihal Jasim (BSE 2021) and Tiffany Tsang (BSE 2021).
  • TelemedTree (David Alanis Garza, Aurora Cenaj & Raveen Kariyawasam) and rUmVA (Yasmina Al Ghadban, Rachel Madhogarhia, Jeong Inn Park, Robert Paslaski & Phuong Vu) also received Berkman Opportunity Fund grants.
  • RHO Therapeutics was named a finalist in the Rice 360 Design Competition for 2021 (David Bartolome, Ethan Boyer, Patrisia de Anda, Kelly Feng & Jenny Nguyen).
  • OtoAI (Yash Lahoti, Nikhil Maheshwari, Jonathan Mairena, Krishna Suresh & Uday Tripathi) took home a Wharton Venture Lab’s Innovation Fund Validation Phase Award for 2021 and won the Technology and Innovation Prize for Penn Engineering’s interdepartmental Senior Design Competition.
  • In addition, three teams won BE’s internal Senior Design competition: IdentiFly (MEAM student Armando Cabrera, ESE student Ethan Chaffee, MEAM student Zachary Lane, ESE student Nicoleta Manu & BE student Abum Okemgbo), OtoAI, and rUmVa.

Short descriptions of each project are below. See each project’s full abstract, final paper, and video presentation here. The full 2021 presentation Youtube playlist is linked below.

reActive is a low-cost wearable device that measures ground reaction force as well as knee angle to aid physical therapists in quantifying an athlete’s recovery from an ACL injury.

EndoMagno is a novel magnetic endoscopy probe that effectively grips metallic objects by interfacing with an endoscope.

NoFib is an at-home wearable for athletes with histories of atrial fibrillation or those recovering from ablation surgeries who wish to continue their workout regimen and track their cardiac recovery without needing to leave their residence.

Tula is a smart compression stocking platform to improve quality of life for people with Postural Orthostatic Tachycardia Syndrome (POTS), a disease which causes fainting upon standing due to blood pooling in legs. Tula can predict a POTS attack through real-time heart rate monitoring and then prevent fainting using dynamic compression.

RHO Therapeutics is a low-cost, wearable glove device that trains fine motor movements using a rehabilitative game that causes motor-mediated flexion and extension of the patient’s hand to aid in chronic stroke rehabilitation. 

EarForce aims to monitor fighter pilots’ health during training and in-flight missions via a low-cost headphone system. The device collects physiological data through the ear and is compatible with existing pilot headphone systems.

IdentiFly is a low-cost device which will provide labs with an easy to integrate way to automatically sort fruit flies by sex. 

TeleMedTree introduces a new level of telemedicine. It is an affordable precision-focused, at-home diagnostic kit to help immunocompromised individuals with respiratory conditions receive a high quality monitoring of their health that is on par or better than what is possible during an in-person visit.

OtoAI is a novel digital otoscope that enables primary care physicians to take images of the inner ear and leverages machine learning to diagnose abnormal ear pathologies.

Synchro-Sense is a device which detects when patients on ventilators are at maximum inhalation and triggers an X-ray image capture for accuracy. 

rUmVa is a cost-effective, autonomous robot that can quickly disinfect rooms by intelligently sanitizing high-touch surfaces and the air. 

Senior Design 2021 Presentation Playlist

Becoming a Bioengineer, Both at Home and On Campus

by Erica K. Brockmeier

The junior year BE-MAD lab series includes modules on dialysis, drug delivery, insect limb control, microfluidics, cell-cell communication, ECG analysis (pictured here), and spectroscopy. (Image: Bioengineering Educational Lab)

While the majority of courses remained online this spring, a small number of lab-based undergraduate courses were able to resume limited in-person instruction. One course was BE 310, the second semester of the Bioengineering Modeling, Analysis, and Design lab sequence. Better known as BE-MAD, this junior-year bioengineering course was able to bring students back to the teaching lab safely this spring while adapting its curriculum to keep remote learners engaged with hands-on lab modules at home.

An Essential Step Towards Becoming a Bioengineer

After learning the basics of chemistry, physics, biology, and math during freshman year and studying bioengineering fundamentals throughout sophomore year, BE-MAD is designed to provide essential hands-on experience to bioengineering majors during their junior years. In BE-MAD, students integrate what they’ve learned so far in the classroom to addressing complex, real-world problems by breaking down the silos that exist across different STEM fields.

“Usually what we hear from students is that this BE 309/310 sequence is when they really feel like they are engineers,” says Brian Chow, one of the BE 310 instructors. “They can put what they learn in classes to work in some practical setting and applied context.”

BE-MAD is also an important course to prepare students for senior design and is designed to be a “safe space to fail,” allowing students to build confidence through trial and error within a supportive environment, explains Sevile G. Mannickarottu, director of the educational laboratories. “We’re trying to build skills needed for senior year as well as teaching students how to think critically about problems by pulling together the materials they’ve learned all in one place,” he says. “By senior year, we want them to, when presented with a problem, not be afraid.”

Adapting BE-MAD for Both Remote and Hybrid Instruction

Traditionally, the BE-MAD lab is taught in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary bioengineering teaching lab, and includes modules on dialysis, drug delivery, insect limb control, microfluidics, cell-cell communication, ECG analysis, and spectroscopy. In the fall, the first lab in the series (BE-309) pivoted to remote learning using video tutorials of lab experiments and providing real data to students for analysis.

This spring, with more aspects of on-campus life able to reopen, the Educational Laboratory staff and BE-MAD instructors developed protocols in collaboration with David Meaney, Penn Engineering senior associate dean and an instructor for BE 309, and Penn’s Environmental Health and Radiation Safety office to safely reopen the teaching lab and Bio-MakerSpace for both BE-310 and for bioengineering senior design students.

The BE-MAD lab was also recreated on Gather.Town, an online video chat platform where students can speak with group members or instructors. Student groups also had their own tables where they could meet virtually to work on data analysis and lab report writing.

To continue to meet the needs of remote students, BE 310 instructor Lukasz Bugaj says that the curriculum was adapted to be two parallel courses—one that could be done entirely at home and the other in-person. The challenge was to adjust the content so that it could be completed either in-person or virtually, and could be switched from in-person to virtual at a moment’s notice because of COVID precautions, all while maximizing the hands-on experience, says Bugaj. “That’s a real credit to the lab staff of Sevile and Michael Patterson, who put a lot of work into revamping this entire class.”

Read the full story in Penn Today.

“The Bio-MakerSpace — Fostering Learning and Innovation Across Many Disciplines”

Penn Bioengineering’s BioMakerSpace in action (photo taken pre-pandemic)

Writing for the Penn Health-Tech blog, Hannah Spector profiled the George H. Stephenson Foundation Educational Laboratory and Bio-MakerSpace, the primary teaching lab for the Department of Bioengineering at Penn Engineering. This interdisciplinary Bio-MakerSpace (aka BioMakerSpace) is open to the entire Penn community for independent research and has become a hub for student startups in recent years:

One example is Strella Biotechnology, founded in 2019 by Katherine Sizov (Biology 2019 & President’s Innovation Prize winner). Strella is developing sensors with the ability to reduce the amount of food waste due to going bad in storage. “Having a Bio-MakerSpace that gives you the functionalities of both a wet lab and a traditional electronics lab is extremely helpful in developing novel technologies” says Sizov on the BE Labs Youtube channel.

The Bio-MakerSpace provides students of all academic backgrounds the resources to turn their ideas into realities, including highly knowledgeable lab staff. Seth Fein (BSE ’20, MSE ’21) has worked at the lab since Fall 2020. “Because bioengineering spans many fields, we encourage interdisciplinary work. Students from Mechanical, Electrical, and Chemical Engineering have all found valuable resources in the lab,” says Fein.

The article also discusses the many resources the BioMakerSpace provides to Penn students and their efforts to keep the lab functional, safe, and open for research and education during the current semester.

Penn Health-Tech is an interdisciplinary center launched in 2017 to advance medical device innovation across the Perelman School of Medicine and the School of Engineering and Applied Sciences by forging collaborative connections among Penn researchers and providing seed funding to incubate novel ideas to advance health care.

Continue reading “The Bio-MakerSpace — Fostering Learning and Innovation Across Many Disciplines” at the Penn Health-Tech blog.

Read more BE blog posts featuring the BioMakerSpace.

Alumni Spotlight: Lamis Elsawah

Lamis Elsawah (BSE 2019)

Lamis Elsawah graduated with a B.S.E. in Bioengineering with a concentration in Medical Devices in 2019. She is currently a Design Engineer at Johnson & Johnson’s DePuy Synthes. We caught up with Lamis to hear about why she chose Penn Bioengineering and what she enjoyed about the curriculum.

“Penn had been my dream school for years prior to even applying to college, so their having a top notch bioengineering program was icing on the cake when it was time for me to apply. Prior to applying, I actually had the opportunity to meet with Dr. Meaney (who was the Bioengineering Department Chair up until I graduated) the summer before my senior year in high school and he was always a constant support throughout my bioengineering education up until graduation. Since Bioengineering had less than 100 students per class, it really allowed us to develop that familial feel with our core Bioengineering professors and lab staff. I honestly don’t think I would have survived junior and senior year without the help of Sevile and the entire lab staff, so I will be forever grateful.

I always like to say that junior year labs are really what made me an engineer. Those were some of the most challenging classes I took, but it was really rewarding once I reached the end. Between those lab courses and Biomechatronics taught by Professor Dourte, it prepared me to become a design engineer and apply all that I had learned. I also had the opportunity to get my minor in Engineering Entrepreneurship and be taught by Professor Cassel, which increased my interest in the business side of developing medical devices. The combination of my studies ultimately led me to Imperial College, London where I received my Master’s in Medical Device Design and Entrepreneurship.

The bioengineering curriculum at Penn allowed me to have a vast knowledge of the field that I will always be grateful for. It not only provided me with the mechanical experience, but also the electrical and biological background. I plan on staying an active alumna in both the Engineering Alumni Society and the Penn Alumni Board as a result of my wonderful experience at Penn Engineering and Penn as a whole.”

This post is part of BE’s Alumni Spotlight series. Read more testimonies from BE Alumni on the BE website.

Guest Post: Penn Bioengineering Lab Classes in the Time of Coronavirus

By Solumtochukwu (Somto) Egboga

Stephenson Lab student employees (L to R): Seth Fein (BSE 20, MSE 21), Nicole Wojnowski (BSE 22), and Somto Egboga (MSE 21)

Since the country began shutting down in March, I have joined the majority of the world in calling the times “unprecedented”: The word, which I rarely used before the pandemic, is now a staple of my lockdown lexicon. In March, we all got the email that changed the trajectory of the rest of our semester and the school year. Since then, COVID-19 has been impacting lives here at Penn, around the nation, and the world. Hanging out with friends and family on Zoom, managing work and school from home, social distancing, wearing masks everywhere, and constantly washing hands have been the reality of our new normal for months.

It has been almost ten months since the World Health Organization declared COVID-19 a pandemic and this has posed a global crisis like nothing most of us have experienced in our lifetime. At Penn, the campus community including students and staff have rallied to keep each other safe, all while doing what is possible to ensure that lectures, teaching, and research are possible in ways that uphold the university’s mission of “strengthening the quality of education and producing innovative research and models of healthcare delivery by fostering a vibrant inclusive environment and fully embracing diversity.”

BE students Alexa Rybicki, Ifeoluwa Popoola, and Caitlin Frazee meet for BE 309 in the Gather.Town virtual lab space.

In Penn Engineering’s Bioengineering Department, the Stephenson Foundation Educational Laboratory & Bio-MakerSpace has been at the heart of ensuring that lab-based classes run as smoothly as possible given the circumstances. First off, during the summer, the lab launched a Slack site that not only kept students engaged and connected through fun, daily “Questions of the Day” but also gave them the opportunity to reach out to our staff and obtain their expertise for coursework and personal projects. The staff at the Stephenson Lab also supported and continue to support Senior Design students (BE 495) with their projects by ordering, receiving, packaging, arranging pickups, or mailing supplies needed to complete their Senior Design projects. In addition, class time takes place using Gather.Town to recreate our Bio-MakerSpace virtually. In other classes, video tutorials of some of the experiments students were missing out on were produced over the summer and made available to students so they could learn by seeing what the lab staff were doing in the videos. For the Bioengineering Modeling, Analysis, and Design (BE MAD) class (BE 309), in addition to videos, our lab Engineer, Michael Patterson, developed software through which students can enter design criteria and have experimental data emailed to them.

Picking up lab supplies outside in the Engineering complex

The staff at the lab also supported a Rehabilitation Engineering course (BE 514) taught by Michelle Johnson, Associate Professor in Physical Medicine and Rehabilitation and Bioengineering, by putting together supplies that enabled students in the class to reengineer toy bunny rabbits to be more accessible to children with disabilities. Optical Microscopy (BE 518), another Bioengineering course, taught by Christopher Fang-Yen, Associate Professor in Bioengineering and Neuroscience, offers students an introduction to the fundamental concepts of optics and microscopy. The staff at the lab put together kits and made them available for pickup by the students in the class.

In a time when the shape of education looks vastly different from what we anticipated this year, the Bio-MakerSpace has been instrumental in ensuring that students still have access to resources that make their learning experience an enriching one. In these unprecedented times, the lab has been able to encourage students to keep up and be engaged with their coursework while also fostering creativity in students, virtually and remotely. While we may not know what life after the pandemic will look like, one thing to be sure of is that the Stephenson Lab will always be a reliable place for Penn students to get support for personal projects and coursework when needed.

Solumtochukwu (Somto) Egboga is a Master’s Student in Bioengineering, graduating December 2020. She also is a student employee for the Stephenson Foundation Bioengineering Laboratory & Bio-MakerSpace.

Student Spotlight: David Alanis Garza

David Alanis Garza (BSE & BS 2021)

The Penn Bioengineering student spotlight series continues with David Alanis Garza. David is a senior from Monterrey, Mexico finishing his dual degree in Bioengineering in the School of Engineering and Applied Sciences and Health Care Management at the Wharton School, with minors in Chemistry and Math. He currently serves as the Captain of the Medical Emergency Response Team (MERT), managing clinical operations and the organization’s response to COVID-19. He is also a Penn tour guide and a member of the Sigma Phi Epsilon fraternity. In his free time, he enjoys mountain climbing, camping, and playing guitar.

What drew you to the field of Bioengineering?

I first became interested in BE during my high school physics class, in which my teacher motivated our lesson in electromagnetism by explaining the basics behind an MRI machine and how defibrillators are basically glorified capacitors. I realized that my lifelong dream to be a surgeon would best be served if I armed myself with a scalpel and screwdriver alike. With the fast paced advances in the medical field, the best physicians must not only understand the underlying pathophysiology of disease, but also how to interact with and keep up with innovations in the biomedical engineering field. At Penn, I have enjoyed discovering that BE is much more wide than what I initially appreciated.

Have you ever done research with a professor on campus? What did you like, and what didn’t you like about it?

I have had the opportunity to work in the Center for Resuscitation Science on a research project investigating diagnostic patterns in the electrocardiogram of Pulseless Electrical Activity (PEA). I truly enjoyed the opportunity to take on more responsibility as the first author of the manuscript we are currently working on, and learned so much about communication in science when presenting the research during American Heart Association’s Resuscitation Science Symposium this last weekend. What I learned in Bioengineering, especially in BE 309/310 (Lab) and BE 301 (Signals and Systems), has been incredibly useful for my research. I am also currently completing a Wharton senior thesis exploring how financial derivative securities could be used to hedge risk in emergency departments. Penn is incredibly supportive of students seeking to gain more research experience, offering an abundance of opportunities for guided and independent projects. I truly enjoyed the opportunity of finding answers to very specific questions in my fields, as well as the valuable relationships with my mentors I formed along the way.

What have been some of your favorite courses and/or projects in Bioengineering so far?

BE 305 (Engineering Principles of Human Physiology) has been my favorite course at Penn. In this class, we were able to understand, quantify, and hack the body’s physiology through an engineering lens. From building a pulseoximeter with our phone cameras, to determining the blood volume of the left ventricle over time with MRI images, this class was very much hands on. A close second is BE 301 (Bioengineering Signals and Systems). I hadn’t previously grasped how this discipline was relevant to medicine until this class, but now I find myself applying what I learned in my research. Lastly, as many other BE students will tell you, the human-cockroach machine interface project in BE lab has been one of my most challenging and rewarding undertakings at Penn. Our team linked a wearable device that measured the forearms position and muscle contractions, so that when the wearer painted a picture, a cockroach leg would be moved and stimulated to paint an imitation of the image. Overcoming my phobia of cockroaches and the countless hours of trial and error were all worth it, for I can now brag about how my team made an artist out of a cockroach leg.

What advice would you give to your freshman self?

It is a great idea to identify which area of BE research you are interested in, and plan your academics so that you can take the closely related courses early on. This will empower you to conduct research with greater responsibilities or give you marketable skills that employers may look for when hiring for internships of your interest. BE upperclassmen are always willing to help, so feel free to reach out to us for any advice.

What do you hope to pursue after obtaining your undergraduate degree?

I will be taking a gap year in which I will be working in the area of hospital administration and clinical engineering before I begin my medical school journey. As of right now, I am interested in specializing in emergency medicine or surgery, but I know my interests may change as my understanding of medicine grows throughout the next years.

Have you done or learned anything new or interesting during quarantine?
The COVID pandemic gave me a unique opportunity to manage the clinical operations of MERT’s emergency medical services during an unprecedented challenge. As a result, I learned a lot about how different hospitals and health care systems are managing their response, not to mention the standard protocols to ensure the safety and wellness of our patients and providers. On a less professional note, I have been able to get a bit better at chess and guitar.