Penn Engineers’ ‘LADL’ Uses Light to Serve Up On-demand Genome Folding

Every cell in your body has a copy of your genome, tightly coiled and packed into its nucleus. Since every copy is effectively identical, the difference between cell types and their biological functions comes down to which, how and when the individual genes in the genome are expressed, or translated into proteins.

Scientists are increasingly understanding the role that genome folding plays in this process. The way in which that linear sequence of genes are packed into the nucleus determines which genes come into physical contact with each other, which in turn influences gene expression.

LADL combines CRISPR/Cas9 and optogenetics to bring two distant points in a linear gene sequence into physical contact, forming a folding pattern known as a “loop.” Looping interactions influence gene expression, so the researchers envision LADL as being a powerful tool for studying these dynamics.

Jennifer Phillips-Cremins, assistant professor in Penn Engineering’s Department of Bioengineering, is a pioneer in this field, known as “3-D Epigenetics.” She and her colleagues have now demonstrated a new technique for quickly creating specific folding patterns on demand, using light as a trigger.

The technique, known as LADL or light-activated dynamic looping, combines aspects of two other powerful biotechnological tools: CRISPR/Cas9 and optogenetics. By using the former to target the ends of a specific genome fold, or loop, and then using the latter to snap the ends together like a magnet, the researchers can temporarily create loops between exact genomic segments in a matter of hours.

The ability to make these genome folds, and undo them, on such a short timeframe makes LADL a promising tool for studying 3D-epigenetic mechanisms in more detail. With previous research from the Phillips-Cremins lab implicating these mechanisms in a variety of neurodevelopmental diseases, they hope LADL will eventually play a role in future studies, or even treatments.

Jennifer Phillips-Cremins, Ji Hun Kim and Mayuri Rege

Alongside Phillips-Cremins, lab members Ji Hun Kim and Mayuri Rege led the study, and Jacqueline Valeri, Aryeh Metzger, Katelyn R. Titus, Thomas G. Gilgenast, Wanfeng Gong and Jonathan A. Beagan contributed to it. They collaborated with associate professor of Bioengineering Arjun Raj and Margaret C. Dunagin, a member of his lab.

The study was published in the journal Nature Methods.

“In recent years,” Phillips-Cremins says, “scientists in our fields have overcome technical and experimental challenges in order to create ultra-high resolution maps of how the DNA folds into intricate 3D patterns within the nucleus. Although we are now capable of visualizing the topological structures, such as loops, there is a critical gap in knowledge in how genome structure configurations contribute to genome function.”

In order to conduct experiments on these relationships, researchers studying these 3D patterns were in need of tools that could manipulate specific loops on command. Beyond the intrinsic physical challenges — putting two distant parts of the linear genome in physical contact is quite literally like threading a needle with a thread that is only a few atoms thick — such a technique would need to be rapid, reversible and work on the target regions with a minimum of disturbance to neighboring sequences.

The advent of CRISPR/Cas9 solved the targeting problem. A modification of the gene editing tool allowed researchers to home in on the desired sequences of DNA on either end of the loop they wanted to form. If those sequences could be engineered to seek one another out and snap together under the other necessary conditions, the loop could be formed on demand.

Cremins Lab members then sought out biological mechanisms that could bind the ends of the loops together, and found an ideal one in the toolkit of optogenetics. The proteins CIB1 and CRY2, found in Arabidopsis, a flowering plant that’s a common model organism for geneticists, are known to bind together when exposed to blue light.

“Once we turn the light on, these mechanisms begin working in a matter of milliseconds and make loops within four hours,” says Rege. “And when we turn the light off, the proteins disassociate, meaning that we expect the loop to fall apart.”

“There are tens of thousands of DNA loops formed in a cell,” Kim says. “Some are formed slowly, but many are fast, occurring within the span of a second. If we want to study those faster looping mechanisms, we need tools that can act on a comparable time scales.”

As shown in a 2013 Nature Methods paper by fellow Penn bioengineer Lukasz Bugaj, the optical response of the CRY2 protein is a key component of LADL. When the blue light is turned on, CRY2 proteins in cell immediately find one another and bind together into clumps large enough to be seen under magnification. When the light is turned off, the clumps begin to dissolve away.”

Fast acting folding mechanisms also have an advantage in that they lead to fewer perturbations of the surrounding genome, reducing the potential for unintended effects that would add noise to an experiment’s results.

The researchers tested LADL’s ability to create the desired loops using their high-definition 3D genome mapping techniques. With the help of Arjun Raj, an expert in measuring the activity of transcriptional RNA sequences, they also were able to demonstrate that the newly created loops were impacting gene expression.

The promise of the field of 3D-epigenetics is in investigating the relationships between these long-range loops and mechanisms that determine the timing and quantity of the proteins they code for. Being able to engineer those loops means researchers will be able to mimic those mechanisms in experimental conditions, making LADL a critical tool for studying the role of genome folding on a variety of diseases and disorders.

“It is critical to understand the genome structure-function relationship on short timescales because the spatiotemporal regulation of gene expression is essential to faithful human development and because the mis-expression of genes often goes wrong in human disease,” Phillips-Cremins says. “The engineering of genome topology with light opens up new possibilities to understanding the cause-and-effect of this relationship. Moreover we anticipate that, over the long term, the use of light will allow us to target specific human tissues and even to control looping in specific neuron subtypes in the brain.”

The research was supported by the New York Stem Cell Foundation; Alfred P. Sloan Foundation; the National Institutes of Health through its Director’s New Innovator Award from the National Institute of Mental Health, grant no. 1DP2MH11024701, and a 4D Nucleome Common Fund, grant no. 1U01HL1299980; and the National Science Foundation through a joint NSF-National Institute of General Medical Sciences grant to support research at the interface of the biological and mathematical sciences, grant no. 1562665, and a Graduate Research Fellowship, grant no. DGE-1321851.

Originally published on the Penn Engineering Medium blog.

César de la Fuente on 35 Innovators Under 35 List

Cesar de la Fuente-Nunez, PhD

César de la Fuente, assistant professor in the Perelman School of Medicine and in the School of Engineering and Applied Science, was named one of MIT Technology Review’s “35 Innovators Under 35” for 2019.

“It’s part of our ethos that technology can and should be a force for good. Our annual list of 35 innovators under 35 is a way of putting faces on that idea,” reads the 2019 award announcement. “This year’s list shows that even in our hard, cynical world, there are still lots of smart people willing to dedicate their lives to the idea that technology can make a safer, fairer world.”

De la Fuente was named in the list’s “Pioneers” category for his work researching antibiotics with a computational approach. Using algorithms, he creates artificial antibiotics to better understand how bacteria will evolve and how scientists can optimize treatments. De la Fuente, who was also recently featured in GEN’s Top 10 Under 40 list, further expands his search for medical solutions by extensively studying a variety of proteins, searching for molecules to develop into antimicrobials.

Included in the honor of being named on the 2019 Innovators List is an invitation for de la Fuente to speak at the EmTech MIT conference in September, an event that reflects on the potential impacts of the year’s biggest developments.

Read MIT Technology Review’s coverage of de la Fuente’s pioneering work and learn more about de la Fuente’s research on his lab website.

Originally posted on the Penn Engineering Medium Blog.

Lee Bassett and Andrew Tsourkas Awarded Grainger Foundation Grant for Interdisciplinary Research

Lee Bassett and Andrew Tsourkas

By Lauren Salig

The National Academy of Engineering (NAE) has awarded two Penn Engineers with The Grainger Foundation Frontiers of Engineering Grant for Advancement of Interdisciplinary Research. Lee Bassett, assistant professor in the Department of Electrical and Systems Engineering, and Andrew Tsourkas, professor and undergraduate chair in the Department of Bioengineering, will be using the $30,000 award to kick-start their research collaboration.

The NAE describes the Frontiers of Engineering program as one that “brings together outstanding early-career engineers from industry, academia, and government to discuss pioneering technical work and leading-edge research in various engineering fields and industry sectors. The goal is to facilitate interactions and exchange of techniques and approaches across fields and facilitate networking among the next generation of engineering leaders.”

Bassett and Tsourkas fit the grant’s description, as their proposed research requires them to combine their different areas of expertise to push the state of the art in engineering. The pair plans to engineer a new class of nanoparticles that can sense and differentially react to particular chemicals in their biochemical environment. This new class of nanoparticles could allow scientists to better study cellular processes and could eventually have important applications in medicine, potentially allowing for more personalized diagnoses and targeted treatment of disease.

To design and create this type of nanoparticle is no small task. The research demands Bassett’s background in engineering quantum-mechanical systems for use as environmental sensors, and Tsourkas’ ability to apply these properties to nanoscale “theranostic” agents, which are designed to target treatments based on a patient’s specific diagnostic test results.

By combining forces, Bassett and Tsourkas hope to introduce a new nanoparticle tool into their fields and to connect even more people in their different areas to promote future interdisciplinary work.

Originally posted on the Penn Engineering Medium Blog.

Chip Diagnostics receives the JPOD @ Philadelphia QuickFire Challenge Award

By Erica K. Brockmeier

Chip Diagnostics is the awardee of the JPOD @ Philadelphia QuickFire Challenge sponsored by Johnson & Johnson Innovation — JLABS. The Challenge was designed to accelerate healthcare innovation and commercialization within the greater Philadelphia area.

David Issadore (center) was announced as the awardee of the JPOD @ Philadelphia QuickFire Challenge by Katherine Merton (right), head of JLABS New York City, Boston, and Philadelphia, at last week’s BIO 2019 International convention. (Photo: Johnson & Johnson Innovation)

Chip Diagnostics is a Philadelphia-based device company founded in 2016 based on research from the lab of David Issadore, Assistant Professor of Bioengineering and Electrical and Systems Engineering in the School of Engineering and Applied Science. The startup combines microelectronics, microfluidics, and nanomaterials with the aim to better diagnose cancer. The company is developing technologies and digital assays for minimally-invasive early cancer detection and screening that can be done using mobile devices.

There has been a long interest in diagnosing cancer using blood tests by looking for proteins, cells, or DNA molecules shed by tumors, but these tests have not worked well for many cancers since the molecules shed tend to be either nonspecific or very rare.

Issadore’s group aims to target different particles called exosomes: Tiny particles shed by cells that contain similar proteins and RNA as the parent cancer cell. The problem, explains Issadore, is that because of the small size of the exosomes, conventional methods such as microscopy and flow cytometry wouldn’t work. “As an engineering lab, we saw an opportunity to build devices on a nanoscale that could specifically sort the cancer exosomes versus the background exosomes of other cells,” he explains.

After Issadore was approached by the IP group at PCI Ventures in the early stages of their research, Chip Diagnostics has since made huge strides as a company. Now, as the awardee of the JPOD @ Philadelphia QuickFire Challenge, Chip Diagnostics will receive $30,000 in grant funding to further develop the first-in-class, ultra-high-definition exosomal-based cancer diagnostic. The award also includes one year of residency at Pennovation Works as well as access to educational programs and mentoring provided by Johnson & Johnson Family of Companies global network of experts.

Originally posted on the Penn Engineering Medium Blog. Continue reading at Penn Today.

Replicating fetal bone growth process could help heal large bone defects

Joel Boerckel, Ph.D, Assistant Professor of Orthopaedic Surgery and Bioengineering

To treat large gaps in long bones, like the femur, which result from bone tumor removal or a shattering trauma, researchers at Penn Medicine and the University of Illinois at Chicago developed a process that partially recreates the bone growth process that occurs before birth. A bone defect of more than two centimeters is considered substantial, and current successful healing rates stand at 50% or less, with failure often resulting in amputation. The team hopes that their method, which they’ve developed in rodent models to mimic the process of rapid fetal bone growth, can substantially improve success rates. Their findings are published in Science Translational Medicine. 

Watercolor- A watercolor image depicting the embryonic bone development process, endochondral ossification, featuring cartilage and bone. Credit: Joel Boerckel

“When bones are originally formed in the embryo, they’re first generated from cartilage, like a template,” says senior author Joel Boerckel, an assistant professor of orthopaedic surgery and bioengineering. “In order to regenerate bone within defects that otherwise won’t heal in grown people, we are seeking to recreate the embryonic bone development process.”

To do that, the researchers’ process begins with the delivery of specially engineered stem cells (called a condensation of mesenchymal cells) to the rodents’ bone defect, which sparks endochondral ossification, the specific term for embryonic bone development.

Read more at Penn Medicine News.

Week in BioE (June 14, 2019)

by Sophie Burkholder

Bio-inspiration Informs New Football Helmet Design from IUPUI Students

Art, design, biology, and engineering all interact with each other in a recent design for a football helmet from two students one of media arts and the other of engineering at the Indiana University – Purdue University Indianapolis. Directed by Lecturer in Media Arts and Science Zebulun Wood, M.S., and Associate Professor of Mechanical and Energy Engineering and Assistant Professor of Biomedical Engineering Andres Tovar, Ph.D., the students found inspiration in biological structures like a pomelo peel, nautilus shell, and woodpecker skull to create energy-absorbing helmet liners. The resulting design took these natural concussion-reducing structures and created compliant mechanism lattice-based liners the replace the foam traditionally placed in between two harder shells of a typical helmet. Their work not only exemplifies the benefits of bio-inspiration, but demonstrates the way that several different domains of study can overlap in the innovation of a new product.

Study of Mechanical Properties of Hyaluronic Acid Could Help Inform Current Debates Over Treatment Regulation for Osteoarthritis

Arthritis is an extremely common condition, especially in older patients, in which inflammation of the joints can cause high amounts of stiffness and pain. Osteoarthritis in particular is the result of the degradation of flexible tissue between the bones of a joint, which increases friction in joint motion. A common treatment of this form of arthritis is the injection of hyaluronic acid, which is meant to provide joint lubrication, and decreases this friction between bones. Recently, however, there has been a debate over hyaluronic acid’s classification by the FDA and whether it should remain based on the knowledge of the mechanical actions of the acid in treatment for osteoarthritis or if potential chemical action of the acid should be considered as well.

Because of limited ways of testing the mechanical properties of the acid, many researchers felt that there could be more to hyaluronic acid’s role in pain relief for arthritic patients. But Lawrence Bonassar, Ph.D., the Daljit S. and Elaine Sarkaria Professor in Biomedical Engineering at the Meinig School of Bioengineering of Cornell University, had another idea. With his lab, he created a custom-made tribometer to measure the coefficient of friction of a given lubricant by rubbing a piece of cartilage back and forth across a smooth glass plate. The research demonstrated that hyaluronic acid’s ability to reduce the coefficient of friction aligned with patients’ pain relief. Bonassar and his team hope that these results will demonstrate the heavy contribution of mechanical action that hyaluronic acid has in osteoarthritis treatment, and help bring an end to the debate over its FDA classification.

A New Way of Mapping the Heart Could Lead to Better Understanding of Contractile Activity

Though reduced contractions in certain regions of the heart can be an indicator of a certain condition, there is currently no way to directly measure contractile activity. This is why Cristian Linte, Ph.D., an Associate Professor of Biomedical Engineering in the Kate Gleason College of Engineering at the Rochester Institute of Technology (RIT), hopes to create a map of the heart that can quantify contraction power. In collaboration with Niels Otani, Ph.D., an Associate Professor in the School of Mathematics at RIT, Linte plans to use an $850,000 grant from the National Science Foundation to achieve a more comprehensive understanding of the heart through both medical imaging and mechanical modeling. The group hopes that their approach will lead to not only a better way to diagnose certain heart conditions and diseases, but also open up understanding of active contraction, passive motion, and the stresses within the heart walls that underlie each.

Celebrity Cat Lil Bub Helps Penn and German Researchers Draw Public Attention to Genetics

Lil Bub’s unique appearance has garnered millions of online fans, and now, an avenue for researchers to talk about genetics. (Photo Courtesy of Mike Bridavsky)

In 2015, a group of curious researchers set out to sequence the genome of a celebrity cat named Lil Bub. They were hoping to understand the genetics behind Lil Bub’s extra toes and unique skeletal structure, which contribute to her heart-warming, kitten-like appearance. However, an equally important goal of their “LilBUBome” project was to invite the general public into the world of genetics.

Orsolya “Uschi” Symmons, a postdoctoral researcher at Penn in Associate Professor of Bioengineering Arjun Raj’s lab, led the research team along with Darío Lupiáñez at the Max-Delbrück Center for Molecular Medicine in Berlin, and Daniel Ibrahim at the Max Planck Institute for Molecular Geneticsin Berlin. Lil Bub’s owner, Mike Bridavsky, also contributed to the project.

Because of Lil Bub’s online fame, the project garnered attention from her fans and the media, all hoping to discover the secret to Lil Bub’s charm. As early as 2015, Gizmodo’s Kiona Smith-Strickland reported on the team’s intentions to sequence Lil Bub’s genome, and, since then, many have been awaiting the results of the LilBUBome.

To read more of this story, visit Penn Engineering’s Medium Blog.

People and Places

The Alfred P. Sloan Foundation awarded a six-year grant to Barnard College and Columbia University’s School of Engineering and Applied Science to support graduate education for women in engineering. The funding will go towards a new five-year program that enables Barnard students to attain both a B.A. and M.S. in one year after their traditional four years of undergraduate education. The program will offer M.S. degrees in chemical engineering, biomedical engineering, and industrial engineering and operations research, and is one of the first of its kind for women’s colleges.

We would like to congratulate Jean Paul Allain, Ph.D., on being named the first head of the new Ken and Mary Alice Lindquist Department of Nuclear Engineering at Penn State. Allain, who is currently a Professor and head of graduate programs in the University of Illinois at Urbana-Champaign’s Department of Nuclear, Plasma, and Radiological Engineering, conducts research in models of particle-surface interactions. In addition to being head of the new department at Penn State, Allain will also hold a position as a Professor of Biomedical Engineering at the university.

We would also like to congratulate Andrew Douglas, Ph.D., on his appointment as the Vice Provost for Faculty Affairs at Johns Hopkins University. Douglas currently holds the position of Vice Dean for Faculty at the Whiting School of Engineering, and has joint appointments in Mechanical and Biomedical Engineering. Douglas’s research at Hopkins focuses on mechanical properties and responses of compliant biological tissue and on the nonlinear mechanics of solids, with a focus on soft tissues and organs like the heart and tongue.

Dan Huh’s Organs-on-Chips and Organoids: Best of Both Worlds

By Lauren Salig

Dan Huh, the Wilf Family Term Assistant Professor in the Department of Bioengineering, focuses his research on creating organs-on-chips: specially manufactured micro-devices with human cells that mimic the natural cellular processes of organs. Huh’s lab has engineered chips that approximate the functioning of placentas and lung disease, some of which were launched into space in May. Most recently, Huh published a review of organ-on-a-chip technology in the journal Science with graduate students Sunghee Estelle Park and Andrei Georgescu.

The June 2019 issue of Science is a special issue centered around the science of growing human organ models in the laboratory. Such in vitro organs are known as organoids; they grow and develop much like organs do in the body, as opposed to Huh’s organs-on-chips, in which cells from the relevant organs are grown within a fabricated device that imitates some of the organ’s functions and natural environment.

In a video accompanying the review article, Huh explains how organoid and organ-on-a-chip technologies differ and the advantages that accompany each approach:

Unlike Organ-on-a-Chip, which are heavily engineered man-made systems, organoids allow us to mimic the complex of the human body in a more natural way. So organoids represent a more realistic model, but they have problems because they develop in a highly variable fashion and it’s not very easy to control their environment. So we think that Organ-on-a-Chip Technology is a promising solution to many of these problems.

Read Huh, Park, and Georgescu’s review article at Science.

Originally posted on the Penn Engineering Medium blog.

César de la Fuente Named One of GEN’s ‘Top 10 Under 40’

Cesar de la Fuente-Nunez, PhD

César de la Fuente, assistant professor in the Departments of Psychiatry and Microbiology in the Perelman School of Medicine and the Department of Bioengineering in the School of Engineering and Applied Science, has been listed as one of the top 10 emerging professionals in his field under the age of 40 by GEN, a publication that covers genetic engineering and biotechnology news. The list recognizes up-and-coming leaders in the field of life sciences, both in industry and academia.

De la Fuente, who started at Penn earlier this year, was recognized because he “is pioneering the computerization of biological systems for the development of transformative biotechnologies designed to solve societal grand challenges such as antibiotic resistance.”

Read the full story at the Penn Engineering Medium blog.

Week in BioE (May 31, 2019)

by Sophie Burkholder

Vector Flow Imaging Helps Visualize Blood Flow in Pediatric Hearts

A group of biomedical engineers at the University of Arkansas used a new ultrasound-based imaging technique called vector flow imaging to help improve the diagnosis of congenital heart disease in pediatric patients. The study, led by associate professor of biomedical engineering Morten Jensen, Ph.D., collaborated with cardiologists at the local Children’s Hospital in Little Rock to produce images of the heart in infants to help potentially diagnose congenital heart defects. Though the use of vector flow imaging has yet to be developed for adult patients, this type of imaging could possibly provide more detail about the direction of blood flow through the heart than traditional techniques like echocardiography do. In the future, the use of both techniques could provide information about both the causes and larger effects of heart defects in patients.

Using Stem Cells to Improve Fertility in Leukemia Survivors

One of the more common side effects of leukemia treatment in female patients is infertility, but researchers at the University of Michigan want to change that. Led by associate professor of biomedical engineering Ariella Shikanov, Ph.D., researchers in her lab found ways of increasing ovarian follicle productivity in mice, which directly relates to the development of mature eggs. The project involves the use of adipose-derived stem cells, that can be found in human fat tissue, to surround the follicles in an ovary-like, three-dimensional scaffold.  Because the radiation treatments for leukemia and some other cancers are harmful to follicles, increasing their survival rate with this stem cell method could reduce the rate of infertility in patients undergoing these treatments. Furthermore, this new approach is innovative in its use of a three-dimensional scaffold as opposed to a two-dimensional one, as it stimulates follicle growth in all directions and thus helps to increase the follicle survival rate.

Penn Engineers Look at How Stretching & Alignment of Collagen Fibers Help Cancer Cells Spread

Cancer has such a massive impact on people’s lives that it might be easy to forget that the disease originates at the cellular level. To spread and cause significant damage, individual cancer cells must navigate the fibrous extracellular environment that cells live in, an environment that Penn Engineer Vivek Shenoy has been investigating for years.

Shenoy is the Eduardo D. Glandt President’s Distinguished Professor with appointments in Materials Science and Engineering, Mechanical Engineering and Applied Mechanics, and Bioengineering. He is also the Director of the Center for Engineering MechanoBiology (CEMB), one of the NSF’s twelve Science and Technology Centers.

Shenoy’s most recent study on cancer’s mechanical environment was led by a postdoctoral researcher in his lab, Ehsan Ban. Paul Janmey, professor in Physiology and Bioengineering, and colleagues at Stanford University also contributed to the study. Shenoy also received the Heilmeier Award this March and delivered the Heilmeier Award Lecture in April.

Read the rest of this story on Penn Engineering’s Medium Blog.

Controlled Electrical Stimulation Can Prevent Joint Replacement Infections

Joint replacements are one of the most common kinds of surgery today, but they still require intense post-operative therapy and have a risk of infection from the replacement implant. These infections are usually due to the inflammatory response that the body has to any foreign object, and can become serious and life-threatening if left untreated. Researchers at the University of Buffalo Jacobs School of Medicine and Biomedical Sciences hope to offer a solution to preventing infections through the use of controlled electrical stimulation. Led by Mark Ehrensberger, Ph.D., Kenneth A. Krackow, M.D., and Anthony A. Campagnari, Ph.D., the treatment system uses the electrical signal to create an antibacterial environment at the interface of the body and the implant. While the signal does not prevent infections completely, these antibacterial properties will prevent infections from worsening to a more serious level. Patented as the Biofilm Disruption Device TM, the final product uses two electrode skin patches and a minimally invasive probe that delivers the electrical signal directly to the joint-body interface. The researchers behind the design hope that it can help create a more standard way of effectively treating joint replacement infections.

People and Places

TBx: Gabriel Koo, Ethan Zhao, Daphne Cheung, and Shelly Teng

For their senior design project, four bioengineering seniors Gabriel Koo, Ethan Zhao, Daphne Cheung, and Shelly Teng created a low-cost tuberculosis diagnostic that they called TBx. Using their knowledge of the photoacoustic effect of certain dyes, the platform the group created can detect the presence of lipoarabinomannan in patient urine. The four seniors presented TBx at the Rice360 Design Competition in Houston, Texas this spring, which annually features student-designed low-cost global health technologies.

Penn Researchers Detect Brain Differences between Fast and Slow Learners

By Lauren Salig

These 12 object-number value pairs were taught to the participants, who had to properly learn the associations to succeed in value judgement tests. The researchers investigated the differences in their brain activity patterns to see why some were faster learners than others.

Why do some people naturally excel at learning instruments, languages or technology while others take longer to pick up new knowledge? Learning requires the brain to encode information, changing its neural “wiring” and creating networks between brain regions.

In a new study, researchers at the University of Pennsylvania’s School of Engineering and Applied Science and the Max Planck Institute for Dynamics and Self-Organization in Germany looked at how brain activation patterns might affect how long it takes for new information to really stick in the brain.

Earlier research has suggested that part of what might slow down learners is over-thinking. A 2015 study led by Danielle Bassett, Eduardo D. Glandt Faculty Fellow and associate professor in the Department of Bioengineering, showed a correlation between slow learning and cognitive control: the brain’s ability to regulate itself by activating the necessary networks and inhibiting unnecessary activity. In that study, when people unnecessarily engaged parts of the brain linked to cognitive control, they were more likely to take longer to learn a simple task.

But beyond what might make an individual learn more slowly, the researchers want to know what sort of geometric patterns of brain activity make for better learning.

Evelyn Tang and Danielle Bassett

Their new study was led by Bassett and Evelyn Tang, who was an Africk Family Postdoctoral Fellow in Bassett’s Complex Systems Lab before starting at the Max Planck Institute this fall. Sharon Thompson-Schill, Christopher H. Browne Distinguished Professor and chair of Psychology, also contributed to the study.

The study was published in the journal Nature Neuroscience.

Read the full story at the Penn Engineering Medium Blog.