BE Seminar: “Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia” (Emery Brown)

Emery Brown, MD, PhD

Speaker: Emery N. Brown, MD, PhD
Edward Hood Taplin Professor of Medical Engineering and of Computational Neuroscience, MIT
Warren M. Zapol Professor of Anaesthesia, Harvard Medical School
Massachusetts General Hospital

Date: Thursday, April 1, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia”

Abstract:

General anesthesia is a drug induced state that is critical for safely and humanely allowing a patient to undergo surgery or an invasive diagnostic procedure. During the last 10 years the study of the neuroscience of anesthetic drugs has been an active area of research. In this lecture we show how anesthetics create altered states of arousal by creating oscillation that impede how the various parts of the brain communicate. These oscillations, which are readily visible on the electroencephalogram (EEG), change systematically with anesthetic dose, anesthetic class and patient age. We will show how the EEG oscillations can be used to monitor the brain states of patients receiving general anesthesia, manage anesthetic delivery and learn about fundamental brain physiology.

EMERY BROWN BIO:

Emery N. Brown is the Edward Hood Taplin Professor of Medical Engineering and Professor of Computational Neuroscience at Massachusetts Institute of Technology. He is the Warren M. Zapol Professor of Anaesthesia at Harvard Medical School and Massachusetts General Hospital (MGH), and an anesthesiologist at MGH.

Dr. Brown received his BA (magna cum laude) in Applied Mathematics from Harvard College, his MA and PhD in statistics from Harvard University, and his MD (magna cum laude) from Harvard Medical School. He completed his internship in internal medicine at the Brigham and Women’s Hospital and his residency in anesthesiology at MGH. He joined the staff at MGH, the faculty at Harvard Medical School in 1992 and the faculty at MIT in 2005.

Dr. Brown is an anesthesiologist-statistician recognized for developing signal processing algorithms for neuroscience data analysis and for defining the neurophysiological mechanisms of general anesthesia.

Dr. Brown was a member of the NIH BRAIN Initiative Working Group. He is a fellow of the IEEE, the AAAS, the American Academy of Arts and Sciences and the National Academy of Inventors. Dr. Brown is a member of the National Academy of Medicine, the National Academy of Sciences and the National Academy of Engineering. He received an NIH Director’s Pioneer Award, the National Institute of Statistical Sciences Sacks Award, the American Society of Anesthesiologists Excellence in Research Award, the Dickson Prize in Science, the Swartz Prize for Theoretical and Computational Neuroscience and a Doctor of Science (honoris causa) from the University of Southern California.

Watch the Inaugural Joseph Bordogna Forum Lecture by Dr. John Brooks Slaughter

The inaugural Joseph Bordogna Forum took place on Wednesday, February 24 and featured a talk from John Brooks Slaughter, Deans’ Professor of Education and Engineering at USC’s Viterbi School of Engineering and Rossier School of Education, entitled a “Call to Action for Racial Justice and Equity in Engineering.”

Dr. Slaughter was joined by panelists Jennifer R. Lukes, Professor in Mechanical Engineering and Applied Mechanics, Oladayo Adewole, an alumnus in Robotics who recently defended his doctoral dissertation in Bioengineering, and CJ Taylor, Raymond S. Markowitz President’s Distinguished Professor in Computer and Information Science and Associate Dean, Diversity, Equity and Inclusion, who moderated the talk.

Dr. Slaughter talked about how microaggressions can often be a barrier to student success and emphasized on the importance of mentorship for underrepresented minorities: “If faculty members seek to improve the retention of underrepresented minorities, often times more has to be done than introducing science and math principles early on in their education, but instead, the unique backgrounds of these students must be understood.”

Originally posted in Penn Engineering Today.

“The Bio-MakerSpace — Fostering Learning and Innovation Across Many Disciplines”

Penn Bioengineering’s BioMakerSpace in action (photo taken pre-pandemic)

Writing for the Penn Health-Tech blog, Hannah Spector profiled the George H. Stephenson Foundation Educational Laboratory and Bio-MakerSpace, the primary teaching lab for the Department of Bioengineering at Penn Engineering. This interdisciplinary Bio-MakerSpace (aka BioMakerSpace) is open to the entire Penn community for independent research and has become a hub for student startups in recent years:

One example is Strella Biotechnology, founded in 2019 by Katherine Sizov (Biology 2019 & President’s Innovation Prize winner). Strella is developing sensors with the ability to reduce the amount of food waste due to going bad in storage. “Having a Bio-MakerSpace that gives you the functionalities of both a wet lab and a traditional electronics lab is extremely helpful in developing novel technologies” says Sizov on the BE Labs Youtube channel.

The Bio-MakerSpace provides students of all academic backgrounds the resources to turn their ideas into realities, including highly knowledgeable lab staff. Seth Fein (BSE ’20, MSE ’21) has worked at the lab since Fall 2020. “Because bioengineering spans many fields, we encourage interdisciplinary work. Students from Mechanical, Electrical, and Chemical Engineering have all found valuable resources in the lab,” says Fein.

The article also discusses the many resources the BioMakerSpace provides to Penn students and their efforts to keep the lab functional, safe, and open for research and education during the current semester.

Penn Health-Tech is an interdisciplinary center launched in 2017 to advance medical device innovation across the Perelman School of Medicine and the School of Engineering and Applied Sciences by forging collaborative connections among Penn researchers and providing seed funding to incubate novel ideas to advance health care.

Continue reading “The Bio-MakerSpace — Fostering Learning and Innovation Across Many Disciplines” at the Penn Health-Tech blog.

Read more BE blog posts featuring the BioMakerSpace.

Kevin Johnson Appointed Penn Integrates Knowledge University Professor

Ron Ozio

Kevin Johnson, Penn’s 27th Penn Integrates Knowledge University Professor.

Kevin Johnson has been named the University of Pennsylvania’s 27th Penn Integrates Knowledge University Professor.

The announcement was made by Penn President Amy Gutmann and Provost Wendell Pritchett.

A pioneer of medical information technologies to improve patient safety, Johnson will hold joint appointments in the Department of Biostatistics, Epidemiology, and Informatics in the Perelman School of Medicine and the Department of Computer and Information Science in the School of Engineering and Applied Science, with secondary appointments in the Annenberg School for Communication and in the Department of Bioengineering. He will also serve as vice president for applied informatics in the University of Pennsylvania Health System and professor of pediatrics at the Children’s Hospital of Philadelphia.

“Kevin Johnson is a gifted physician-scientist,” Gutmann said, “who has harnessed and aligned the power of medicine, engineering, and technology to improve the health of individuals and communities. He has championed the development and implementation of clinical information systems and artificial intelligence to drive medical research, encouraged the effective use of technology at the bedside, and empowered patients to use new tools to better understand how medications and supplements may affect their health. He is a board-certified pediatrician, and his commitment to patient health and welfare knows no age limits. In so many different settings, Kevin’s work is driving progress in patient care and improving our health care system. He is a perfect fit for Penn, where our goal is to create a maximally inclusive and integrated academic community to spur unprecedented global impact.”

Johnson is currently the Cornelius Vanderbilt Professor and chair of the Department of Biomedical Informatics at the Vanderbilt University School of Medicine, where he has taught since 2002. He is a world-renowned innovator in developing clinical information systems that improve best practices in patient safety and compliance with medical practice guidelines, especially the use of computer-based documentation systems and other digital technologies. His research bridges biomedical informatics, bioengineering, and computer science. As senior vice president for health information technology at the Vanderbilt University Medical Center from 2014 to 2019, he led the development of clinical systems that enabled doctors to make better treatment and care decisions for individual patients, in part by alerting patients as to how medications or supplements might affect their body chemistry, as well as new systems to integrate artificial intelligence into patient care workflows and to unify and simplify all the Medical Center’s clinical and administrative systems.

The author of more than 150 publications, books, or book chapters, Johnson has held numerous leadership positions in the American Medical Informatics Association and the American Academy of Pediatrics, leads the American Board of Pediatrics Informatics Advisory Committee, directs the Board of Scientific Counselors of the National Library of Medicine, and is a member of the NIH Council of Councils. He has been elected to the National Academy of Medicine (Institute of Medicine), American College of Medical Informatics, and Academic Pediatric Society and has received awards from the Robert Wood Johnson Foundation and American Academy of Pediatrics, among many others.

“Kevin Johnson exemplifies our most profound Penn values,” Pritchett said. “He is a brilliant innovator committed to bringing together disciplines across traditional boundaries. Yet he always does so in the service of helping others, finding technological solutions that can make a tangible impact on improving people’s lives. He will be an extraordinary colleague, teacher and mentor across multiple areas of our campus in the years to come.”

Johnson earned an M.D. from the Johns Hopkins University School of Medicine, an M.S. in medical informatics from Stanford University, and a B.S. with honors in biology from Dickinson College. He became the first Black chief resident in pediatrics at Johns Hopkins in 1992, and was a faculty member in both pediatrics and biomedical information sciences at Johns Hopkins until 2002.

The Penn Integrates Knowledge program was launched by Gutmann in 2005 as a University-wide initiative to recruit exceptional faculty members whose research and teaching exemplify the integration of knowledge across disciplines and who are appointed in at least two Schools at Penn.

Originally posted in Penn Today.

Grace Hopper Distinguished Lecture: “Biomanufacturing Vascularized Organoids and Functional Human Tissues” (Jennifer A. Lewis)

We hope you will join us for the 2021 Grace Hopper Distinguished Lecture by Dr. Jennifer Lewis, presented by the Department of Bioengineering. For event links, email ksas@seas.upenn.edu.

Date: Thursday, March 25, 2021
Time: 3:00-4:00 PM EDT

Jennifer A. Lewis

Speaker: Jennifer A. Lewis, Sc.D.
Wyss Professor for Biologically Inspired Engineering
The Wyss Institue
Paulson School of Engineering and Applied Sciences
Harvard University

Title: “Biomanufacturing Vascularized Organoids and Functional Human Tissue”

Following the lecture, join us for a panel discussion “Horizon 2030: Engineering Life & Life in (Bio)Engineering” featuring Dr. Lewis and Penn faculty and moderated by Bioengineering students. Further details here.

Lecture Abstract:
Recent protocols in developmental biology are unlocking the potential for stem cells to undergo differentiation and self-assembly to form “mini-organs”, known as organoids. To bridge the gap from organoid building blocks (OBBs) to therapeutic functional tissues, integrative approaches that combine bottom-up organoid assembly with top-down bioprinting are needed. While it is difficult, if not impossible, to imagine how either organoids or bioprinting alone would fully replicate the complex multiscale features required for organ-specific function – their combination may provide an enabling foundation for de novo tissue manufacturing. My talk will begin by describing our recent efforts to generate organoids in vitro with perfusable microvascular networks that support their viability and maturation. Next, I will describe the generation of 3D vascularized organ-specific tissues by assembling OBBs into a living matrix that supports the embedded printing of macro-vessels by a process known as sacrificial writing in functional tissue (SWIFT).  Though broadly applicable, I will highlight our recent work on kidney, cerebral, and cardiac tissue engineering.

Dr. Lewis Bio:

Jennifer A. Lewis is the Jianming Yu Professor of Arts and Sciences, the Wyss Professor for Biologically Inspired Engineering in the Paulson School of Engineering and Applied Sciences, and a core faculty member of the Wyss Institute at Harvard University. Her research focuses on 3D printing of functional, structural, and biological materials that emulate natural systems. Prior to joining Harvard, Lewis was a faculty member in the Materials Science and Engineering Department at the University of Illinois at Urbana-Champaign, where she served as the Director of the Materials Research Laboratory. Currently, she directs the Harvard Materials Research Science and Engineering Center (MRSEC) and serves the NSF Mathematical and Physical Sciences Advisory Committee.

Lewis has received numerous awards, including the Presidential Faculty Fellow Award, the American Chemical Society Langmuir Lecture Award, the Materials Research Society Medal Award, the American Ceramic Society Sosman and Roy Lecture Awards, and the Lush Science Prize. She is an elected member of the National Academy of Sciences, National Academy of Engineering, National Academy of Inventors, and the American Academy of Arts and Sciences. Her research has enjoyed broad coverage in the popular media. To date, she has co-founded two companies, Voxel8 Inc. and Electroninks, that are commercializing technology from her lab.

Information on the Grace Hopper Lecture:
In support of its educational mission of promoting the role of all engineers in society, the School of Engineering and Applied Science presents the Grace Hopper Lecture Series. This series is intended to serve the dual purpose of recognizing successful women in engineering and of inspiring students to achieve at the highest level.
Rear Admiral Grace Hopper was a mathematician, computer scientist, systems designer and the inventor of the compiler. Her outstanding contributions to computer science benefited academia, industry and the military. In 1928 she graduated from Vassar College with a B.A. in mathematics and physics and joined the Vassar faculty. While an instructor, she continued her studies in mathematics at Yale University where she earned an M.A. in 1930 and a Ph.D. in 1934. Grace Hopper is known worldwide for her work with the first large-scale digital computer, the Navy’s Mark I. In 1949 she joined Philadelphia’s Eckert-Mauchly, founded by the builders of ENIAC, which was building UNIVAC I. Her work on compilers and on making machines understand ordinary language instructions lead ultimately to the development of the business language, COBOL. Grace Hopper served on the faculty of the Moore School for 15 years, and in 1974 received an honorary degree from the University. In support of the accomplishments of women in engineering, each department within the School invites a prominent speaker for a one or two-day visit that incorporates a public lecture, various mini-talks and opportunities to interact with undergraduate and graduate students and faculty.

Seminar: “The Coming of Age of De Novo Protein Design” (David Baker)

David Baker, Ph.D.

Speaker: David Baker, Ph.D.
Professor
Biochemistry
University of Washington

Date: Thursday, March 18, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “The Coming of Age of De Novo Protein Design”

This seminar is jointly hosted by the Department of Bioengineering and the Department of Biochemistry & Biophysics.

Abstract:

Proteins mediate the critical processes of life and beautifully solve the challenges faced during the evolution of modern organisms. Our goal is to design a new generation of proteins that address current day problems not faced during evolution. In contrast to traditional protein engineering efforts, which have focused on modifying naturally occurring proteins, we design new proteins from scratch based on Anfinsen’s principle that proteins fold to their global free energy minimum. We compute amino acid sequences predicted to fold into proteins with new structures and functions, produce synthetic genes encoding these sequences, and characterize them experimentally. I will describe the de novo design of fluorescent proteins, membrane penetrating macrocycles, transmembrane protein channels, allosteric proteins that carry out logic operations, and self-assembling nanomaterials and polyhedra. I will also discuss the application of these methods to COVID-19 challenges.

Bio:

David Baker is the director of the Institute for Protein Design, a Howard Hughes Medical Institute Investigator, a professor of biochemistry and an adjunct professor of genome sciences, bioengineering, chemical engineering, computer science, and physics at the University of Washington. His research group is a world leader in protein design and protein structure prediction. He received his Ph.D. in biochemistry with Randy Schekman at the University of California, Berkeley, and did postdoctoral work in biophysics with David Agard at UCSF. Dr. Baker is a member of the National Academy of Sciences and the American Academy of Arts and Sciences. Dr. Baker is a recipient of the Breakthrough Prize in Life Sciences, Irving Sigal and Hans Neurath awards from the Protein Society, the Overton Prize from the ISCB, the Feynman Prize from the Foresight Institute, the AAAS Newcomb Cleveland Prize, the Sackler prize in biophysics, and the Centenary Award from the Biochemical society. He has also received awards from the National Science Foundation, the Beckman Foundation, and the Packard Foundation. Dr. Baker has published over 500 research papers, been granted over 100 patents, and co-founded 11 companies. Seventy-five of his mentees have gone on to independent faculty positions.

‘RNA worked for COVID-19 vaccines. Could it be used to treat cancer and rare childhood diseases?’

William H. Peranteau, Michael J. Mitchell, Margaret Billingsley, Meghana Kashyap, and Rachel Riley (Clockwise from top left)

As COVID-19 vaccines roll out, the concept of using mRNA to fend off viruses has become a part of the public dialogue. However, scientists have been researching how mRNA can be used to in life-saving medical treatments well before the pandemic.

The “m” in “mRNA” is for “messenger.” A single-stranded counterpart to DNA, it translates the genetic code into the production of proteins, the building blocks of life. The Moderna and Pfizer COVID-19 vaccines work by introducing mRNA sequences that act as a set of instructions for the body to produce proteins that mimic parts of the virus itself. This prepares the body’s immune response to recognize the real virus and fight it off.

Because it can spur the production of proteins that the body can’t make on its own, mRNA therapies also have the potential to slow or prevent genetic diseases that develop before birth, such as cystic fibrosis and sickle-cell anemia.

However, because mRNA is a relatively unstable molecule that degrades quickly, it needs to be packaged in a way that maintains its integrity as its delivered to the cells of a developing fetus.

To solve this challenge, Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, is researching the use of lipid nanoparticles as packages that transport mRNA into the cell. He and William H. Peranteau, an attending surgeon in the Division of General, Thoracic and Fetal Surgery and the Adzick-McCausland Distinguished Chair in Fetal and Pediatric Surgery at Children’s Hospital of Philadelphia, recently co-authored a “proof-of-concept” paper investigating this technique.

In this study, published in Science Advances, Mitchel examined which nanoparticles were optimal in the transport of mRNA to fetal mice. Although no disease or organ was targeted in this study, the ability to administer mRNA to a mouse while still in the womb was demonstrated, and the results are promising for the next stages of targeted disease prevention in humans.

Mitchel spoke with Tom Avril at The Philadelphia Inquirer about the mouse study and its implications for treatment of rare infant diseases through the use of mRNA, ‘the messenger of life.’

Penn bioengineering professor Michael J. Mitchell, the other senior author of the mouse study, tested various combinations of lipids to see which would work best.

The appeal of the fatty substances is that they are biocompatible. In the vaccines, for example, two of the four lipids used to make the delivery spheres are identical to lipids found in the membranes of human cells — including plain old cholesterol.

When injected, the spheres, called nanoparticles, are engulfed by the person’s cells and then deposit their cargo, the RNA molecules, inside. The cells respond by making the proteins, just as they make proteins by following the instructions in the person’s own RNA. (Important reminder: The RNA in the vaccines cannot become part of your DNA.)

Among the different lipid combinations that Mitchell and his lab members tested, some were better at delivering their cargo to specific organs, such as the liver and lungs, meaning they could be a good vehicle for treating disease in those tissues.

Continue reading Tom Avril’s ‘RNA worked for COVID-19 vaccines. Could it be used to treat cancer and rare childhood diseases?’ at The Philadelphia Inquirer.

Hao Huang Named AIMBE Fellow

Hao Huang, Ph.D.

Hao Huang, Research Associate Professor of Radiology in the Perelman School of Medicine and member of the Penn Bioengineering Graduate Group, has been named an American Institute for Medical and Biological Engineering (AIMBE) Fellow.

Election to the AIMBE College of Fellows is among the highest professional distinctions accorded to a medical and biological engineer. “The College of Fellows is comprised of the top two percent of medical and biological engineers in the country. The most accomplished and distinguished engineering and medical school chairs, research directors, professors, innovators, and successful entrepreneurs comprise the College of Fellows. AIMBE Fellows are regularly recognized for their contributions in teaching, research, and innovation.”

Huang was “nominated, reviewed, and elected by peers and members of the College of Fellows for contributions to the development and applications of innovative MR methods to study the developing brain.”

A formal induction ceremony will be held during AIMBE’s virtual 2021 Annual Event on March 26. Huang will be inducted along with 174 colleagues who make up the AIMBE Fellow Class of 2021.

Read the full press release.

‘As More Women Enter Science, It’s Time to Redefine Mentorship’

 

Danielle Bassett, Ph.D.

Danielle Bassett, J. Peter Skirkanich Professor in the departments of Bioengineering and Electrical and Systems Engineering, investigates how the shape of networks impact the phenomena that arises from them. Much of that research is focused on networks of neurons, and how the different ways they are wired together in different people can influence their mental traits, such as memory or executive function.

Bassett is also interested in networks of people, however, as the shapes of those networks can have a major impact on a society’s traits. Last year, she and her colleagues published a study that investigated the network of citations neuroscience researchers produced in the course of their work, demonstrating a systemic gender bias that left women underrepresented in the literature.

Recently, Bassett spoke with WIRED’s Grace Huckins about the big-picture changes that must take place within academia for it to become truly equitable.

When a group of researchers at NYU Abu Dhabi published a paper in Nature Communications last fall suggesting that young women scientists should seek out men as mentors, the backlash was swift and vociferous. Countless scientists, many of them women, registered their indignation on Twitter—some even penning open letters and their own preprints in response. The original paper had found that female junior scientists who authored papers with male senior scientists saw their papers cited at higher rates. But a number of critics contested the assertion that this result established a link between male mentors and career performance. Scientists routinely coauthor articles with people who are not their mentors, they argued, and citation rates are just one metric of achievement. In response to these criticisms, the authors eventually retracted their paper. (They declined to comment to WIRED.)

But the paper had already stirred up a broader discussion about gender and mentorship in academia. For Danielle Bassett, a professor of bioengineering at the University of Pennsylvania, the methodological concerns that prompted the paper’s retraction were far from its worst sin. She herself has researched citation practices and found that, in neuroscience, papers with male senior authors are cited at a disproportionately high rate—primarily because other male scientists preferentially cite them. To suggest that young women should therefore try to author papers with men is, she believes, a grave error. “That was a problem in assigning blame,” she says. “The onus is on us to create a scientific culture that lets students choose a mentor that’s right for them.”

Continue reading Grace Huckins’s ‘As More Women Enter Science, It’s Time to Redefine Mentorship‘ at WIRED.

Originally posted in Penn Engineering Today.

An ‘Electronic Nose’ to Sniff Out COVID-19

by Erica K. Brockmeier

Postdoc Scott Zhang at work in the Johnson lab. (Photo: Eric Sucar, University Communications)

Even as COVID-19 vaccines are being rolled out across the country, the numerous challenges posed by the pandemic won’t all be solved immediately. Because herd immunity will take some time to reach and the vaccine has not yet been approved for some groups, such as children under 16 years of age, the coming months will see a continued need for tools to rapidly track the disease using real-time community monitoring.

A team of Penn researchers is working on a new “electronic nose” that could help track the spread of COVID-19. Led by physicist Charlie Johnson, the project, which was recently awarded a $2 million grant from the NIH, aims to develop rapid and scalable handheld devices that could spot people with COVID-19 based on the disease’s unique odor profile.

Dogs and devices that can detect diseases

Long before “coronavirus” entered into the vernacular, Johnson was collaborating with Cynthia Otto, director of the Penn Vet Working Dog Center, and Monell Chemical Senses Center’s George Preti to diagnose diseases using odor. Diseases are known to alter a number of physical processes, including body odors, and the goal of the collaboration was to develop new ways to detect the volatile organic compounds (VOCs) that were unique to ovarian cancer.

The next step is to scale down the current device, and the researchers are aiming to develop a prototype for testing on patients within the next year.

Since 2012, the researchers have been developing new ways to diagnose early-stage ovarian cancer. Otto trained dogs to recognize blood plasma samples from patients with ovarian cancer using their acute sense of smell. Preti, who passed away last March, was looking for the specific VOCs that gave ovarian cancer a unique odor. Johnson developed a sensor array, an electronic version of the dog’s nose, made of carbon nanotubes interwoven with single-stranded DNA. This device binds to VOCs and can determine samples that came from patients with ovarian cancer.

Last spring, as the pandemic’s threat became increasingly apparent, Johnson and Otto shifted their efforts to see if they could train their disease-detecting devices and dogs to spot patients with COVID-19.

Continue reading at Penn Today.

N.B.: A.T. Charlie Johnson, Rebecca W. Bushnell Professor of Physics and Astronomy at the Penn School of Arts & Sciences, and Lyle Ungar, Professor in Computer and Information Science at Penn Engineering and Psychology at the School of Arts & Sciences, are both members of the Penn Bioengineering Graduate Group.