Machine Learning Reveals New Antibiotics for Resistant Bacteria

Cesar de la Fuente-Nunez, PhD

Once hailed as medical miracles, antibiotics are losing their effectiveness due to the rapid increase of bacterial immunity.

Researchers are scrambling to keep up with evolution, and they are currently exploring how machine learning can be applied to microbiology to develop more effective treatments.

In the past, researchers have studied bacteria behavior and used their findings to work against the natural patterns of bacterial life. In the 1980s, computer-assisted screening methods helped researchers in their efforts but few developments surfaced from their work. It seemed that there were no new antibiotics to be found using traditional methods, and pharmaceutical companies stepped away from funding antibiotic development in favor of more profitable drugs used to treat chronic conditions. But a new field of research shows a way forward, thanks to the massive advances in computing that have occurred over the intervening decades.

Among the pioneering researchers in this field is César de La Fuente, Presidential Assistant Professor in Psychiatry, Microbiology and Bioengineering. De La Fuente is accelerating the discovery of new antibiotics with his Drug Repurposing Hub, a library of more than 6,000 compounds that is using machine learning algorithms to seek out possible solutions for human disease. With his compound library, de La Fuente is able to examine drugs already approved by the FDA and hunt for new, more effective applications.

In addition to this work, de La Fuente and his colleagues are interested in using machine learning to innovate drug design itself. His lab uses a machine learning platform to generate new molecules in silico and perform experiments on them. Once the results of the experiments come in, they are fed back into the computer so the machine learning platform can continuously learn and improve its findings from the data.

In a recent interview with Katherine Harmon Courage in Quanta Magazine, de La Fuente said:

“The hypothesis is that nature has run out of inspiration in terms of providing us with new antibiotics. That’s why we think that machines … could diversify natural molecules to convert them to synthetic versions that would be much more effective.”

Originally posted on the Penn Engineering blog. Read more about de La Fuente’s work and other researchers exploring the computational design of new antibiotics in Quanta Magazine or The Atlantic.

Five Tips to Stay Positive and Healthy During Social Isolation

Though the coronavirus situation is changing daily, even hourly, by now the need for physical separation from those not in your household is clear. That doesn’t mean it’s easy, says Penn psychologist Melissa Hunt.

“We’re social animals,” says Hunt, associate director of clinical training in Penn’s Psychology Department. “We have an entire neuroendocrine system that responds to touch and social proximity with people we care about, that contributes to our sense of well-being and connection in the world. Losing out on that is really hard.”

It’s also not something we’ve really been asked to do before, says Lyle Ungar, a Penn computer scientist who is part of the World Well-Being Project, an initiative that uses social media language to measure psychological well-being and physical health. “This is an experiment on a scale that we’ve never seen in the United States,” he says.

Ungar and Hunt offer some suggestions to stay positive and healthy in the face of this new social isolation.

1. Maintain a connection with the people you love, even if it can’t be a physical one. 

“Social distance does not mean no social contact,” Ungar says. Psychologically, face-to-face conversations are best, but right now they’re not likely possible. Instead, Ungar suggests video calls. “They’re second best in terms of emotional bonding,” he says. “Phone calls aren’t as good as video chats, and texting is even worse. But of course, being totally isolated is the worst.”

Read the full five tips at Penn Today. Media contact Michele W. Berger.

Melissa G. Hunt is the associate director of clinical training in the Department of Psychology in the School of Arts and Sciences at the University of Pennsylvania

Lyle Ungar is a professor in the departments of Bioengineering and Computer and Information Science in the School of Engineering and Applied Science, in the Graduate Group in Genomics and Computational Biology in the Perelman School of Medicine, in the Department of Operations, Information, and Decisions in the Wharton School, and in the Department of Psychology in the School of Arts and Sciences.

Penn Bioengineering Junior Shreya Parchure Named Goldwater Scholar

Shreya Parchure (BSE ’21)

Shreya Parchure is one of four juniors at the University of Pennsylvania who have been selected as Goldwater Scholars by the Barry Goldwater Scholarship & Excellence in Education Foundation, which provides scholarships of as much as $7,500 to undergraduate students interested in pursuing research careers in the natural sciences, mathematics, or engineering. Each year Penn’s Center for Undergraduate Research and Fellowships (CURF) nominates four students for the award and provides advising.

Shreya Parchure, from Fremont, California, is a bioengineering major who has been working with Roy Hamilton, the director of the Laboratory for Cognition and Neural Stimulation in the Perelman School of Medicine, characterizing a form of non-invasive brain stimulation for use in neurorehabilitation after stroke. The work with Hamilton is through a Faculty Mentoring Undergraduate Research grant. She also is creating a cardiac surgical device with support from Penn Health-Tech. She is a Rachleff Scholar, and a recipient of a Vagelos Undergraduate Research Grant. As a United Nations Millennium Fellow, Parchure led a social-impact initiative expanding her work with Penn’s Intercultural Leadership Program. She serves as a CURF Research Peer Advisor and as co-editor-in-chief of the Penn Bioethics Journal. She intends to pursue an M.D./Ph.D. in neuroengineering and conduct medical research.

Originally posted on the Penn Engineering blog. Read about Penn’s other Goldwater Scholars at Penn Today.