Annenberg and Penn Bioengineering Research into Communication Citation Bias

Photo Credit: Debby Hudson / Unsplash

Women are frequently under-cited in academia, and the field of communication is no exception, according to research from the Annenberg School for Communication. The study, entitled “Gendered Citation Practices in the Field of Communication,” was published in Annals of the International Communication Association.

A new study from the Addiction, Health, & Adolescence (AHA!) Lab at the Annenberg School for Communication at the University of Pennsylvania found that men are over-cited and women are under-cited in the field of Communication. The researchers’ findings indicate that this problem is most persistent in papers authored by men.

“Despite known limitations in their use as proxies for research quality, we often turn to citations as a way to measure the impact of someone’s research,” says Professor David Lydon-Staley, “so it matters for individual researchers if one group is being consistently under-cited relative to another group. But it also matters for the field in the sense that if people are not citing women as much as men, then we’re building the field on the work of men and not the work of women. Our field should be representative of all of the excellent research that is being undertaken, and not just that of one group.”

The AHA! Lab is led by David Lydon-Staley, Assistant Professor of Communication and former postdoc in the Complex Systems lab of Danielle Bassett, J. Peter Skirkanich Professor in Bioengineering and in Electrical and Systems Engineering in the School of Engineering and Applied Science. Dr. Bassett and Bassett Lab members Dale Zhou and Jennifer Stiso, graduate students in the Perelman School of Medicine, also contributed to the study.

Read “Women are Under-cited and Men are Over-cited in Communication” in Annenberg School for Communication News.

Developing Endotracheal Tubes that Release Antimicrobial Peptides

by Evan Lerner

Scanning electron microscope images of endotracheal tubes at three levels of magnification. After 24 hours of Staphylococcus epidermidis exposure, tubes coated with the researchers’ AMPs (right) showed decreased biofilm production, as compared with tubes coated with just polymer (center) and uncoated tubes (left).

Endotracheal tubes are a mainstay of hospital care, as they ensure a patient’s airway is clear when they can’t breathe on their own. However, keeping a foreign object inserted in this highly sensitive part of the anatomy comes is not without risk, such as the possibility of infection, inflammation and a condition known as subglottic stenosis, in which scar tissue narrows the airway.

Broad-spectrum antibiotics are one way to mitigate these risks, but come with risks of their own, including harming beneficial bacteria and contributing to antibiotic resistance.

With this conundrum in mind, Riccardo Gottardi, Assistant Professor of Pediatrics at the Children’s Hospital of Philadelphia (CHOP) and of Bioengineering at Penn Engineering, along with Bioengineering graduate students and lab members Matthew Aronson and Paul Gehret, are developing endotracheal tubes that can provide a more targeted antimicrobial defense.

In a proof-of-concept study published in the journal The Laryngoscope, the team showed how a different type of antimicrobial agent could be incorporated into the tubes’ polymer coating, as well as preliminary results suggesting these devices would better preserve a patient’s microbiome.

Instead, the investigators explored the use of antimicrobial peptides (AMPs), which are small proteins that destabilize bacterial membranes, causing bacterial cells to fall apart and die. This mechanism of action allows them to target specific bacteria and makes them unlikely to promote antimicrobial resistance. Prior studies have shown that it is possible to coat endotracheal tubes with conventional antibiotics, so the research team investigated the possibility of incorporating AMPs into polymer-coated tubes to inhibit bacterial growth and modulate the upper-airway microbiome.

The researchers, led by Matthew Aronson, a graduate student in Penn Engineering’s Department of Bioengineering, tested their theory by creating a polymer coating that would release Lasioglossin-III, an AMP with broad-spectrum antibacterial activity. They found that Lasio released from coated endotracheal tubes, reached the expected effective concentration rapidly and continued to release at the same concentration for a week, which is the typical timeframe that an endotracheal is used before being changed. The investigators also tested their drug-eluting tube against airway microbes, including S. epidermidis, S. pneumoniae, and human microbiome samples and observed significant antibacterial activity, as well as prevention of bacterial adherence to the tube.

Read “CHOP Researchers Develop Coating for Endotracheal Tubes that Releases Antimicrobial Peptides” at CHOP News.

This post originally appeared in Penn Engineering Today.

Penn Bioengineering Senior Design Team Wins Hamlyn Symposium Prize

The winners of the Medical Robots for Contagious Disease Challenge Award for Best Application (L to R): Yasmina Al Ghadban, Phuong Vu, and Rob Paslaski.

Three recent Penn Bioengineering graduates took home the Best Application Award from the Medical Robotics for Contagious Disease Challenge, part of the three-month Hamlyn Symposium on Medical Robotics. Organized by the Hamlyn Centre at Imperial College, London, UK, in collaboration with the UK-RAS Network, the challenge involved “creating a 2-minute video of robotic or AI technology that could be used to tackle contagious diseases” in response to the current and potential future pandemics. Yasmina Al Ghadban, Rob Paslaski, and Phuong Vu were members of the Penn Bioengineering senior design team rUmVa who designed and built a cost-effective, autonomous robot that can quickly disinfect rooms by intelligently sanitizing high-touch surfaces and the air. The Best Application Award comes with a prize of £5,000.

The full Team rUmVa (L to R): Yasmina Al Ghadban, Rachel Madhogarhia, Phuong Vu, Jeong Inn Park, and Rob Paslaski.

Team rUmVa, which also included Bioengineering seniors Rachel Madhogarhia and Jeong Inn Park, also received a Berkman Opportunity fund grant from Penn Engineering and was one of three teams to win Penn Bioengineering’s Senior Design competition. Senior Design work is conducted every year on-site in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (which successfully reopened for in-person activities this Spring semester). Read the full list of Spring 2021 Senior Design Award Winners here.

rUmVa and the other challenge winners were honored during the Hamlyn Symposium’s virtual closing ceremony on July 29, 2021.

Read rUmVa’s abstract and final papers, along with those of all of the Penn Bioengineering Teams’, on the BE Labs Senior Design 2021 website. rUmVa’s presentation can be viewed on Youtube:

Alumnus Jackson Foster on ’20 in Their 20s’ List

Jackson Foster

Penn Bioengineering alumnus Jackson Foster (BSE 2014) was included in the Los Angeles Business Journal’s 2021 “20 in Their 20s” list, recognizing rising entrepreneurial stars of L.A.’s business community. Foster is the Founder and Chief Executive of the San Francisco-based Edily Learning, an education technology company which has created an app focused on education, learning goals, and personalized content using a TikTok-like algorithm.

After completing his bachelor’s degree, Foster earned his M.B.A in Business Administration and Management at the UCLA Anderson School of Management.

Read “20 in Their 20s: Jackson Foster” in the Los Angeles Business Journal.

Jenny Jiang Receives Immunotherapy Grant from Cancer Research Institute

Jenny Jiang, Ph.D.

Jenny Jiang, the Peter & Geri Skirkanich Associate Professor of Innovation in the department of Bioengineering, has received a Lloyd J. Old STAR Program grant from the Cancer Research Institute (CRI), which is a major supporter of cancer immunotherapy research and clinical trials with the goal of curing all types of cancer.

The CRI Lloyd J. Old Scientists Taking Risks (STAR) Program “provides long-term funding to mid-career scientists, giving them the freedom and flexibility to pursue high-risk, high-reward research at the forefront of discovery and innovation in cancer immunotherapy.” This prestigious grant was give to six awardees this year, chosen from a pool of hundreds of applicants, and recognizes “future leaders in the field of cancer immunotherapy [who are expected to] carry out transformational research.”

The Old STAR Program Grant comes with $1.25 million in funding over 5 years to support the awardees’ cancer immunology research.

Jiang, who recently joined Penn Bioengineering, is a pioneer in developing tools in genomics, biophysics, immunology, and informatics and applying them to study systems immunology and immune engineering in human diseases. She was also inducted into the American Institute for Medical and Biological Engineering (AIMBE) College of Fellows in March 2021 for her outstanding contributions to the field of systems immunology and immunoengineering and devotion to the success of women in engineering. Jiang’s research focuses on systems immunology by developing technologies that enable high-throughput, high-content, single cell profiling of T cells in health and disease and she is recognized as one of the leading authorities in systems immunology and immunoengineering.

“The STAR Award from CRI allows my lab to answer some of the fundamental questions in T cell biology, such as is the T cell repertoire complete to cover all possible cancer antigens, as well as to improve the efficacy of T cell based cancer immunotherapies,” says Jiang.

Decoding How the Brain Accurately Depicts Ever-changing Visual Landscapes

A collaborative study finds that deeper regions of the brain encode visual information more slowly, enabling the brain to identify fast-moving objects and images more accurately and persistently.

by Erica K. Brockmeier

Busy pedestrian crossing at Hong Kong

New research from the University of Pennsylvania, the Scuola Internazionale Superiore de Studi Avanzati (SISSA), and KU Leuven details the time scales of visual information processing across different regions of the brain. Using state-of-the-art experimental and analytical techniques, the researchers found that deeper regions of the brain encode visual information slowly and persistently, which provides a mechanism for explaining how the brain accurately identifies fast-moving objects and images. The findings were published in Nature Communications.

Understanding how the brain works is a major research challenge, with many theories and models developed to explain how complex information is processed and represented. One area of particular interest is vision, a major component of neural activity. In humans, for example, there is evidence that around half of the neurons in the cortex are related to vision.

Researchers are eager to understand how the visual cortex can process and retain information about objects in motion in a way that allows people to take in dynamic scenes while still retaining information about and recognizing the objects around them.

“One of the biggest challenges of all the sensory systems is to maintain a consistent representation of our surroundings, despite the constant changes taking place around us. The same holds true for the visual system,” says Davide Zoccolan, director of SISSA’s Visual Neuroscience Laboratory. “Just look around us: objects, animals, people, all on the move. We ourselves are moving. This triggers rapid fluctuations in the signals acquired by the retina, and until now it was unclear whether the same type of variations apply to the deeper layers of the visual cortex, where information is integrated and processed. If this was the case, we would live in tremendous confusion.”

Experiments using static stimuli, such as photographs, have found that information from the sensory periphery are processed in the visual cortex according to a finely tuned hierarchy. Deeper regions of the brain then translate this information about visual scenes into more complex shapes, objects, and concepts. But how this process works in more dynamic, real-world settings is not well understood.

To shed light on this, the researchers analyzed neural activity patterns in multiple visual cortical areas in rodents while they were being shown dynamic visual stimuli. “We used three distinct datasets: one from SISSA, one from a group in KU Leuven led by Hans Op de Beeck and one from the Allen Institute for Brain Science in Seattle,” says Zoccolan. “The visual stimuli used in each were of different types. In SISSA, we created dedicated video clips showing objects moving at different speeds. The other datasets were acquired using various kinds of clips, including from films.”

Next, the researchers analyzed the signals registered in different areas of the visual cortex through a combination of sophisticated algorithms and models developed by Penn’s Eugenio Pasini and Vijay Balasubramanian. To do this, the researchers developed a theoretical framework to help connect the images in the movies to the activity of specific neurons in order to determine how neural signals evolve over different time scales.

“The art in this science was figuring out an analysis method to show that the processing of visual images is getting slower as you go deeper and deeper in the brain,” says Balasubramanian. “Different levels of the brain process information over different time scales; some things could be more stable, some quicker. It’s very hard to tell if the time scales across the brain are changing, so our contribution was to devise a method for doing this.”

Read the full story in Penn Today.

Vijay Balasubramanian is the Cathy and Marc Lasry Professor in the Department of Physics and Astronomy in the School of Arts & Sciences and a member of the Penn Bioengineering Graduate Group at the University of Pennsylvania.

The Pioneering Career of Norman Badler

by Ebonee Johnson

The retiring CIS professor chats about his recent ACM SIGGRAPH election and his expansive computer graphics path.

Norman Badler, Ph.D. (Image credit: Penn CIS)

Norman Badler’s election into the 2021 ACM SIGGRAPH Academy Class is right on time. After nearly five decades of teaching and trailblazing in the Penn community, the Rachleff Family Professor in the Department of Computer and Information Sciences retired at the end of the spring semester.

When he arrived at the University in 1974, CIS itself was only about 2 years old, and there was virtually no computer graphics focus or program at all. Badler had no intention to teach it.

“At that time, I was actually a computer vision researcher, but I was also working a little bit in natural language,” says Badler. “So I was literally brought in to fit between the chair, Aravind Joshi, who was a natural language person, and the computer vision person. It wasn’t until about three or four years after I came here that I switched over to computer graphics. Mostly because there was a vacuum and a need and an excitement.”

Several years after completing his dissertation in computer vision and forming a career path to head in that direction, Badler “started getting serious about computer graphics.” An organization that was getting its start around the same time as his Penn career would play a major role: ACM SIGGRAPH (the Association for Computing Machinery’s Special Interest Group on Computer Graphics and Interactive Techniques).

Read the full story in the CIS Blog.

N.B.: Badler was a member of the Penn Bioengineering Graduate Group.

New Grant Aims to Broaden Participation in Cutting-Edge Materials Research

University of Puerto Rico’s Edgardo Sánchez (left) and Penn graduate Zhiwei Liao working in the lab of Daeyeon Lee. Via the Advancing Device Innovation through Inclusive Research and Education program, researchers from Penn and the University of Puerto Rico will continue their materials science collaboration while supporting STEM career pathways for underrepresented groups. (Image credit: Felice Macera).

The National Science Foundation (NSF) has awarded grants to eight research teams to support partnerships that will increase diversity in cutting-edge materials research, education, and career development. One of those teams is Penn’s Laboratory for Research on the Structure of Matter (LRSM) and the University of Puerto Rico (UPR), whose long-running collaboration has now received an additional six years of support.

With the goal of supporting partnerships between minority-serving educational institutions and leading materials science research centers, NSF’s Partnership for Research & Education in Materials (PREM) program funds innovative research programs and provides institutional support to increase recruitment, retention, and graduation by underrepresented groups as well as providing underserved communities access to materials research and education.

‘Research at the frontier’

With this PREM award, known as the Advancing Device Innovation through Inclusive Research and Education (ADIIR) program, researchers from Penn and UPR’s Humacao and Cayey campuses will conduct research on the properties of novel carbon-based materials with unique properties, and will study the effects of surface modification in new classes of sensors, detectors, and purification devices.

Thanks to this collaboration of more than 20 years, both institutions have made significant scientific and educational progress aided by biannual symposia and regular pre-pandemic travel between both institutions before the pandemic, resulting in a rich portfolio of publications, conference presentations, patents, students trained, and outreach programs.

“Together we have been publishing good papers that have impact, and we’ve really cultivated a culture of collaboration and friendship between our institutions,” says Penn’s Arjun Yodh, former director of the LRSM. “Our goal is to carry out research at the frontier and, in the process, nurture promising students from Puerto Rico and Penn.”

Ivan Dmochowski, a chemistry professor at Penn who has been involved with PREM for several years, says that this program has helped his group connect with experts in Puerto Rico whose skills complement his group’s interests in protein engineering. Dmochowski has also hosted UPR faculty members and students in his lab and also travelled to Puerto Rico before the pandemic to participate in research symposia, seminars, and outreach events.

“I’ve had students who have benefitted from being a co-author on a paper or having a chance to mentor students, and the faculty we’ve interacted with are exceptional,” Dmochowski says. “There’s a lot of benefit for both me and my students, and I’ve enjoyed our interactions both personally and scientifically.”

Penn’s Daeyeon Lee, a chemical and biomolecular engineering professor who has been involved with PREM for several years, regularly hosts students and faculty from UPR while working on nanocarbon-based composite films for sensor applications. The success of this collaboration relies on unique materials made by researchers at UPR combined with a method for processing them into composite structures developed in Lee’s lab.

“What I really admire about people at PREM, both faculty and students, is their passion,” says Lee. “I think that’s had a really positive impact on my students and postdocs who got to interact with them because they got to see the passion that the students brought.”

Read the full story in Penn Today.

Daeyeon Lee is a professor and the Evan C Thompson Term Chair for Excellence in Teaching in the Department of Chemical and Biomolecular Engineering and a member of the Bioengineering Graduate Group in Penn’s School of Engineering and Applied Science.

Arjun Yodh is the James M. Skinner Professor of Science in the Department of Physics & Astronomy in Penn’s School of Arts & Sciences and a member of the Bioengineering Graduate Group in Penn’s School of Engineering and Applied Science.

Emeritus Faculty Member Susan Margulies Named NSF Directorate of Engineering

Susan Margulies, Ph.D. (Credit Emory University)

Susan Margulies, Professor Emeritus in Bioengineering, has been selected to lead the National Science Foundation’s (NSF) Directorate of Engineering, “the first biomedical engineer to head the directorate.” Margulies is chair of the Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University. She earned her master’s and doctoral degrees from Penn Bioengineering before joining the department as an Assistant Professor in 1993.

In a press release from Emory University, Margulies stated that, “The opportunity to serve the NSF resonates with my values — catalyzing impact through innovation, rigor, partnership, and inclusion.” The announcement continues:

“Building on initiatives she developed at the University of Pennsylvania, Margulies prioritized career development for faculty and Ph.D. graduates during her years leading Coulter BME. She added dedicated staff to help doctoral students prepare for increasingly popular career paths outside of academia. The department increased the diversity of Ph.D. students and improved faculty diversity at all ranks during her tenure. Margulies oversaw hiring of 20 new faculty members and launched formalized mentoring for early career professors, including creating a new associate chair position dedicated to faculty development.”

Margulies will step down from her position as chair in Coulter BME though she will remain in the Georgia Tech and Emory faculty. Her Injury Biomechanics Lab studies “the influence of mechanical factors on the structure and function of human tissues from the macroscopic to microscopic level, with an emphasis on the brain and lungs.”

Read the full announcement in the Emory News Center.

Read the NSF press release here.

Student Research Highlight: Colin Huber

Colin Huber, Ph.D. student

Colin Huber, a Ph.D. candidate in Bioengineering studying head impact biomechanics and concussion in sports at the Center for Injury Research and Prevention (CIRP) at the Children’s Hospital of Philadelphia (CHOP), recently published “Variations in Head Impact Rates in Male and Female High School Soccer” in Medicine & Science in Sports & Exercise with colleagues from CHOP’s Minds Matter Concussion Frontier Program and the CIRP.

Colin’s paper, the goal of which was to compare “to compare head impact exposure rates (head impacts/exposure period) in male and female high school soccer by using multiple methodological approaches,” was recently profiled in the Penn Engineering Research & Innovation Newsletter.

Read the full story in the ADRO Newsletter.