Penn Bioengineering Senior Raveen Kariyawasam Named 2022 Rhodes Scholar

2022 Rhodes Scholar, Raveen Kariyawasam

One of the two University of Pennsylvania seniors who were awarded Rhodes Scholarships for graduate study at the University of Oxford is Penn Engineering‘s own Raveen Kariyawasam, from Colombo, Sri Lanka.

Kariyawasam is a double major in Engineering’s Department of Bioengineering, with concentrations in computational medicine and medical devices, and in the Wharton School, with concentrations in finance and entrepreneurship and innovation.

“We are so proud of our newest Penn Rhodes Scholars who have been chosen for this tremendous honor and opportunity,” said President Amy Gutmann. “The work Raveen has done in health care innovation and accessibility and Nicholas has done to support student well-being while at Penn is impressive, and pursuing a graduate degree at Oxford will build upon that foundation. We look forward to seeing how they make an impact in the future.”

The Rhodes is highly competitive and one of the most prestigious scholarships in the world. The scholarships provide all expenses for as long as four years of study at Oxford University in England.

According to the Rhodes Trust, about 100 Rhodes Scholars will be selected worldwide this year, chosen from more than 60 countries. Several have attended American colleges and universities but are not U.S. citizens and have applied through their home country, including Kariyawasam in Sri Lanka.

With an interest in health care innovation and accessibility, Kariyawasam is involved in several research projects, including his Wharton honors thesis that focuses on optimizing a low-cost electronic medical record system in Sri Lanka and the Philippines. He has received several research grants, including the Vagelos Undergraduate Research Grant, the Berkman Opportunity Fund grant, and the National Science Foundation’s Innovation Corps grant. At Penn, he is editor-in-chief of Synapse, a student-run health care magazine and is vice president of the Phi Sigma Biological Honor Society. He is a disc jockey for the student-run radio station, WQHS, and an executive board member of the Wharton Undergraduate Healthcare Club. He also is a former student ambassador at the Penn Health-Tech Center for Health Devices and Technology. At Oxford, Kariyawasam plans to pursue a D.Phil. degree.

Read more at Penn Today.

Penn’s 2021 iGEM Team Takes Home Multiple Prizes

Four of Penn’s 2021 iGEM team (left to right): Juliette Hooper, Grace Qian, Saachi Datta, and Gloria Lee.

The University of Pennsylvania’s 2021 iGEM team has been awarded several distinctions in this year’s highly competitive iGEM Competition. The International Genetically Engineered Machine Competition is the largest synthetic biology community and the premiere synthetic biology competition for both university and high school level students from around the world. Each year, hundreds of interdisciplinary teams of students combine molecular biology techniques and engineering concepts to create novel biological systems and compete for prizes and awards through oral presentations and poster sessions.

The Penn team’s project, “OptoReader,” is a combined light-simulation device and plate reader, which makes optogenetic experiments more powerful and accessible. The abstract reads:

“Metabolic engineering has the potential to change the world, and optogenetic tools can make metabolic engineering research easier by providing spatiotemporal control over cells. However, current optogenetic experiments are low-throughput, expensive, and laborious, which makes them inaccessible to many. To tackle this problem, we combined a light-stimulation device with a plate reader, creating our OptoReader. This device allows us to automate ~100 complex optogenetic experiments at the same time. Because it is open source and inexpensive, our device would make optogenetic experiments more efficient and available to all.”

Watch the team’s presentation on OptoReader here.

This year’s Penn team was mentored by Lukasz Bugaj, Assistant Professor in Bioengineering. In addition, the team was supported by Brian Chow, Associate Professor in Bioengineering. Chow has supported previous undergraduate iGEM teams at Penn, and was involved in the creation of the iGEM program during his time as a graduate student at MIT.

OptoReader took home the top prizes in three of the four categories in which it was nominated. These prizes include:

  • Best Foundational Advance (best in track)
  • Best Hardware (best from all undergraduate teams)
  • Best Presentation (best from all undergraduate teams)

They were also awarded a Gold Medal Distinction and were included in the Top 10 Overall (from all undergraduate teams, and the only team from the United States to make the top 10) and Top 10 Websites (from all undergraduate teams).

The awards were announced during iGEM’s online Jamboree Award Ceremony on November 14, 2021 (watch the full award ceremony here).

In addition to the outstanding awards recognition, OptoReader was also selected for an iGEM Impact Grant which awards teams $2,500 to continue development of their projects. This new initiative from the iGEM Foundation was announced earlier this year, and with the support of the Frederick Gardner Cottrell Foundation, is distributing a total of $225,000 in grant funds to 90 iGEM teams during the 2021 competition season. Learn more about the Impact Grant and read the full list of winning teams here.

Penn’s 2021 iGEM team was made up of an interdisciplinary group of women undergraduates from the School of Engineering and Applied Science (SEAS) and the School of Arts and Sciences (SAS):

  • Saachi Datta (B.A. in Biology and Religious Studies 2021)
  • Juliette Hooper (B.S.E. and M.S.E. in Bioengineering 2022)
  • Gabrielle Leavitt (B.S.E. in Bioengineering 2021 and current Master’s student in Bioengineering)
  • Gloria Lee (B.A. in Physics and B.S.E. in Bioengineering 2023)
  • Grace Qian (B.S.E. in Bioengineering 2023)
  • Lana Salloum (B.A. in Neuroscience 2022)

They were mentored by three doctoral students in Bioengineering: Will Benman (Bugaj Lab), David Gonzalez Martinez (Bugaj Lab), Gabrielle Ho (Chow Lab). Saurabh Malani, a graduate student in the Avalos Lab at Prince University, was also very involved in mentoring the team.

OptoReader

The graduate mentors were instrumental in quickly bringing the undergraduates up to speed on a diverse array of skills needed to accomplish this project including circuit design, optics, optogenetics, programming, and additive manufacturing. They then coached the team through building and testing prototypes, as well as accomplishing other objectives required for success at iGEM. These other objectives included establishing collaborations with other iGEM teams, performing outreach, and effectively communicating their project through a website and online presentations.

“This team and their work is outstanding,” said William Benman. “Not only did they sweep several awards, but they did it all with a small team and while working with technology they had no prior experience with. They created a device that not only increases accessibility to optogenetics but also allows optogenetic systems to interface directly with computer programs, allowing for completely new research avenues within the field. They are truly a remarkable group.”

Due to the COVID pandemic, the team operated virtually through the summer of 2020, and then continued in person in the summer of 2021 as the project progressed and more students returned to Penn’s campus. Upon return to campus, the work was conducted in both the Bugaj lab in the Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching laboratory in Penn Bioengineering and an interdisciplinary makerspace open to anyone at Penn. The team also collaborated with the Avalos Lab at Princeton University, which conducts research in the application of optogenetics to optimize production of valuable  chemicals in microbes.

“I’m beyond excited about this phenomenal showing from team Penn at the iGEM Jamboree awards ceremony,” said faculty mentor Lukasz Bugaj. “This is truly outstanding recognition for what the team has accomplished, and it wouldn’t have happened without essential contributions from everyone on the team.”

Brian Chow added that this achievement is “no small feat,” especially for a hardware project. “The iGEM competition leans toward genetic strain engineering, but the advances in the field made by these incredible students were undeniable,” he said.

Going forward, the team plans to publish a scientific article and file a patent application describing their device. “It’s clear that there is excitement in the scientific community for what our students created, and we’re excited to share the details and designs of their work,” said Bugaj.

Congratulations to all the team members and mentors of OptoReader on this incredible achievement! Check out the OptoReader project website and Instagram to learn more about their project.

This project was supported by the Department of Bioengineering, the School of Engineering and Applied Science, and the Office of the Vice Provost for Research (OVPR). 

Yogesh Goyal Selected as 2021 STAT Wunderkind

Yogesh Goyal, Ph.D.

Yogesh Goyal, Ph.D.,  a postdoctoral researcher in Genetics and Bioengineering, has been selected as a 2021 STAT Wunderkind, which honors the “next generation of scientific superstars.” Goyal’s research is centered around developing novel mathematical and experimental frameworks to study how a rare subpopulation of cancer cells are able to survive drug therapy and develop resistance, resulting in relapse in patients. In particular, his work provides a view of different paths that single cancer cells take when becoming resistant, at unprecedented resolution and scale. This research aims to help devise novel therapeutic strategies to combat the challenge of drug resistance in cancer.

Goyal is a Jane Coffin Childs Postdoctoral Fellow in the systems biology lab of Arjun Raj, Professor in Bioengineering and Genetics at Penn. He will begin an appointment as Assistant Professor in the Department of Cell and Developmental Biology (CDB) in the Feinberg School of Medicine at Northwestern University in spring 2022.

Read the announcement in Penn Medicine News.

BE Seminar: “Ionic Liquid-based Therapeutics” (Samir Mitragotri)

Samir Mitragotri, Ph.D.

Speaker: Samir Mitragotri, Ph.D.
Hiller Professor of Bioengineering and Hansjorg Wyss Professor of Biologically Inspired Engineering
John A. Paulson School of Engineering and Applied Sciences
Harvard University

Date: Thursday, November 18, 2021
Time: 3:30-4:30 PM EST
Zoom – check email for link or contact ksas@seas.upenn.edu
This seminar will be held virtually, but students registered for BE 699 can gather to watch in Moore 216.

Abstract: Ionic liquids, the liquid salts comprising organic anions and cations, offer exciting opportunities for several therapeutic applications. Their tunable properties offer control over their design and function. Starting with biocompatible ions, we synthesized a library of ionic liquids and explored them for various drug delivery applications. Ionic liquids provided unique advantages including overcoming the biological transport barriers of skin, buccal mucosa and the intestinal epithelium. At the same time, they also stabilized proteins and nucleic acids and enabled the delivery of biologics across these barriers. Ionic liquids also provided unique biological functions including adjuvancy towards vaccines and antimicrobial function. I will present an overview of the design features of ionic liquids and novel biomedical applications enabled by these unique materials.

Samir Mitragotri Bio: Samir Mitragotri is the Hiller Professor of Bioengineering and Wyss Professor of Biologically Inspired Engineering at Harvard University. His research is focused on transdermal, oral, and targeted drug delivery systems. He is an elected member of the National Academy of Engineering, National Academy of Medicine and National Academy of Inventors. He is also a foreign member of Indian National Academy of Engineering. He is also an elected fellow of AAAS, CRS, BMES, AIMBE, and AAPS. He is an author of over 350 publications, an inventor on over 200 patent/patent applications, and a Clarivate Highly Cited Researcher. He received his BS in Chemical Engineering from the Institute of Chemical Technology, India and a PhD in Chemical Engineering from the Massachusetts Institute of Technology. He is the Editor-in-Chief of AIChE’s and SBE’s journal Bioengineering and Translational Medicine.

Penn Researchers Show ‘Encrypted’ Peptides Could be Wellspring of Natural Antibiotics

by Melissa Pappas

César de la Fuente, Ph.D.

While biologists and chemists race to develop new antibiotics to combat constantly mutating bacteria, predicted to lead to 10 million deaths by 2050, engineers are approaching the problem through a different lens: finding naturally occurring antibiotics in the human genome.

The billions of base pairs in the genome are essentially one long string of code that contains the instructions for making all of the molecules the body needs. The most basic of these molecules are amino acids, the building blocks for peptides, which in turn combine to form proteins. However, there is still much to learn about how — and where — a particular set of instructions are encoded.

Now, bringing a computer science approach to a life science problem, an interdisciplinary team of Penn researchers have used a carefully designed algorithm to discover a new suite of antimicrobial peptides, hiding deep within this code.

The study, published in Nature Biomedical Engineering, was led by César de la Fuente, Presidential Assistant Professor in Bioengineering, Microbiology, Psychiatry, and Chemical and Biomolecular Engineering, spanning both Penn Engineering and Penn Medicine, and his postdocs Marcelo Torres and Marcelo Melo. Collaborators Orlando Crescenzi and Eugenio Notomista of the University of Naples Federico II also contributed to this work.

“The human body is a treasure trove of information, a biological dataset. By using the right tools, we can mine for answers to some of the most challenging questions,” says de la Fuente. “We use the word ‘encrypted’ to describe the antimicrobial peptides we found because they are hidden within larger proteins that seem to have no connection to the immune system, the area where we expect to find this function.”

Read the full story in Penn Engineering Today.

Penn Bioengineering Alumna Cynthia Reinhart-King is President Elect of BMES

Dr. Cynthia Reinhart-King, Engineering, BME, Photo by Joe Howell

Penn Bioengineering alumna Cynthia Reinhart-King, Cornelius Vanderbilt Professor of Engineering and Professor of Biomedical Engineering at Vanderbilt University, was elected the next President of the Biomedical Engineering Society (BMES), the largest professional society for biomedical engineers. Her term as president-elect started at the annual BMES meeting in October 2021.

Reinhart-King graduated with her Ph.D. from Penn Bioengineering in 2006. She studied in the lab of Daniel Hammer, Alfred G. and Meta A. Ennis Professor in Bioengineering and Chemical and Biomolecular Engineering as a Whitaker Fellow and went on to complete postdoctoral training as an Individual NIH NRSA postdoctoral fellow at the University of Rochester. Prior to joining Vanderbilt, she was on the faculty of Cornell University and received tenure in the Department of Biomedical Engineering. The Reinhart-King lab at Vanderbilt “uses tissue engineering, microfabrication, novel biomaterials, model organisms, and tools from cell and molecular biology to study the effects of mechanical and chemical changes in tissues during disease progression.”

Reinhart-King gave the 2019 Grace Hopper Distinguished Lecture, sponsored by the Department of Bioengineering. This lecture series recognizes successful women in engineering and seeks to inspire students to achieve at the highest level. She is a recipient of numerous prestigious awards, including the Rita Schaffer Young Investigator Award in 2010, an NSF CAREER Award, and the Mid-Career Award in 2018 from BMES.

In a Q&A on the BMES Blog, Reinhart-King said that:

“BMES is facing many challenges, like many societies, as we deal with the hurdles associated with COVID-19 and inequities across society. We must continue to address those challenges. However, we are also in a terrific window of having robust membership, many members who are eager to get involved with the society’s activities, and a national lens on science and scientists. One of my goals will be to identify and create opportunities for our members to help build the reach of the society and its member.”

Read “Cynthia Reinhart-King is president-elect of the Biomedical Engineering Society” in Vanderbilt News.

A New Model for How the Brain Perceives Unique Odors

by Erica K. Brockmeier

Cathy and Marc Lasry Professor Vijay Balasubramanian at Penn’s BioPond.

A study published in PLOS Computational Biology describes a new model for how the olfactory system discerns unique odors. Researchers from the University of Pennsylvania found that a simplified, statistics-based model can explain how individual odors can be perceived as more or less similar from others depending on the context. This model provides a starting point for generating new hypotheses and conducting experiments that can help researchers better understand the olfactory system, a complex, crucial part of the brain.

The sense of smell, while crucial for things like taste and hazard avoidance, is not as well studied as other senses. Study co-author Vijay Balasubramanian, a theoretical physicist with an interest in how living systems process information, says that olfaction is a prime example of a complex information-processing system found in nature, as there are far more types of volatile molecules—on the scale of tens or hundreds of thousands—than there are receptor types in the nose to detect them, on the scale of tens to hundreds depending on the species.

“Every molecule can bind to many receptors, and every receptor can bind to many molecules, so you get this combinatorial mishmash, with the nose encoding smells in a way that involves many receptor types to collectively tell you what a smell is,” says Balasubramanian. “And because there are many fewer receptor types than molecular species, you basically have to compress a very high dimensional olfactory space into a much lower dimensional space of neural responses.”

Read the full story in Penn Today.

Vijay Balasubramanian is the Cathy and Marc Lasry Professor in the Department of Physics & Astronomy in the School of Arts & Sciences at the University of Pennsylvania and a member of the Penn Bioengineering Graduate Group.

This research was supported by the Simons Foundation Mathematical Modeling of Living Systems (Grant 400425) and the Swartz Foundation.

Catherine Michelutti on “Finding New Passions” with the Orion Organisation

Catherine Michelutti (SEAS/WHARTON ’23) working on her internship in her backyard with her dog

Catherine Michelutti, a junior in Bioengineering and Wharton and fellow in the Stavros Niarchos Foundation (SNF) Paideia Program, shared her virtual internship experience with the Orion Organisation, a healthcare NGO based in South Africa that provides for “the educational, training and therapeutic needs of children, youth and adults living with physical, psychosocial challenges, intellectual and neurological disabilities”:

“My internship with the Orion Organization has prompted me to reflect on my identity in terms of where my passions and future career interests lie. My previous work experiences have all been in biomedical research fields, which is something I’m passionate about and want to continue doing throughout my career. However, working with Orion has opened my eyes to the realms of interdisciplinary work that comes with operating a healthcare NGO and the joys that come with it.”

Read the full story in the Penn Abroad blog.

NSF Grant Will Support Research into Sustainable Manufacturing of 3D Solid-state Sodium-ion Batteries and Battery Workforce Training

by Melissa Pappas

The Department of Materials Science and Engineering’s Eric Detsi will lead a team of researchers, including MSE’s Eric Stach and Russell Composto, to develop more eco-friendly batteries that are based on sodium, rather than lithium.

Rechargeable lithium-ion batteries are becoming more ubiquitous, thanks to their use in emerging applications such as battery electric vehicles and grid-scale energy storage, however, these batteries are inefficiently manufactured and unsustainably sourced.

The typical battery cell consists of a separator membrane filled with liquid electrolyte, sandwiched between the negative anode and positive cathode. This design has several drawbacks, including a complex and energy-intensive manufacturing process, inefficient recycling, and increased safety risks as the liquid electrolyte is flammable and crystallization between the electrodes can lead to explosions. Finally, there are substantial geopolitical and environmental risks associated with the global supply chain for lithium-ion battery materials, such as cobalt and lithium.

The solid-state battery design addresses these issues. In solid-state batteries, the flammable liquid electrolyte is replaced by a solid electrolyte, making them safer and more energy efficient. Sodium-ion batteries address the issue of sustainable material sourcing as sodium is more abundant than lithium and cobalt, the materials used in lithium-ion batteries. Both solid-state lithium-ion batteries and sodium-ion batteries are very attractive for battery electric vehicles and grid-scale energy storage applications.

However, current solid-state battery designs also suffer from two major drawbacks: a low capacity for power storage and a resistance to charge transfer.

 To tackle the unsustainability in battery materials and the inefficiency of the current solid-state design, the National Science Foundation has awarded a team of Penn Engineers $2.7 Million in funding through its Future Manufacturing program. The team will be led by Eric Detsi, Stephenson Term Assistant Professor in the Department of Materials Science and Engineering (MSE), and will include Eric Stach, Professor in MSE and Director of the Laboratory for Research on the Structure of Matter, and Russell Composto, Howell Family Faculty Fellow and Professor in MSE with appointments in the Departments of Bioengineering and Chemical and Biomolecular Engineering.

“Our team will investigate a novel ‘Eco Manufacturing’ route to a 3D solid-state sodium-ion battery based on polymer solid-electrolytes,” says Detsi. “Our Eco Manufacturing approach will enable us to create batteries from only abundant elements, achieve ultralong battery cycle life, prevent sodium-dendrite-induced short-circuiting by using a ‘self-healing’ metal anode that can transform into liquid when the battery is operating, and efficiently recycle the battery’s anode and cathode. We will also improve the manufacturing process by using time- and energy-efficient processes including direct ink writing, solid-state conversion, and infiltration.”

Read the full story in Penn Engineering Today.

BE Seminar: “Systems-level Analyses of the Human Gut Microbiome” (Ilana Lauren Brito)

Ilana Lauren Brito, Ph.D.

Speaker: Ilana Lauren Brito, Ph.D.
Assistant Professor, Mong Family Sesquicentennial Faculty Fellow in Biomedical Engineering
Meinig School of Biomedical Engineering
Cornell University

Date: Thursday, October 28, 2021
Time: 3:30-4:30 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu
Room: Moore 216

Abstract: A major question regarding the human gut microbiota is: by what mechanisms do our most intimately associated organisms affect human health? In this talk, I will present several systems-level approaches that we have developed to address this fundamental question. My lab has pioneered methods that leverage protein-protein interactions to implicate bacterial proteins in human pathways linked to disease, revealing for the first time a network of interactions that affect diseases such as colorectal cancer, inflammatory bowel disease, type 2 diabetes and obesity that can be mined for novel therapeutics and therapeutic targets. I will present novel methods that that enable deeper insight into the transcriptome of organisms within our guts and their spatial localization. Finally, I will shift to the problem of the spread of antibiotic resistance, in which the gut microbiota are implicated. Pathogens become multi-drug resistance by acquiring resistance traits carried by the gut microbiota. Studying this process in microbiomes is inherently difficult using current methods. I will present several methods that enable tracking of genes within the microbiome and computational tools that predict the network of gene transfer between bacteria. Overall, these systems-level tools provide deep insight into the knobs we can turn to engineer outcomes within the microbiome that can improve human health.

Ilana Brito Bio: Ilana Brito is an Assistant Professor of Biomedical Engineering at Cornell University. Ilana received a BA from Harvard and a PhD from MIT. She started her postdoc as an Earth Institute Postdoctoral Fellow at Columbia University where she launched the Fiji Community Microbiome Project, a study aimed at tracking microbiota across people and their social networks, and continued this work at MIT and the Broad Institute working with Eric Alm. In her lab at Cornell, Ilana and her team are developing a suite of experimental systems biology tools to probe the functions of the human microbiome in a robust, high-throughput manner. Ilana has received numerous accolades for her work, including a Sloan Research Fellowship, Packard Fellowship, a Pew Biomedical Research Scholarship and an NIH New Innovator Award.