Spencer Haws Receives Druckenmiller Fellowship

Spencer Haws, Ph.D.

Spencer Haws, Postdoctoral Research Fellow in the laboratory of Jennifer E. Phillips-Cremins, Associate Professor and Dean’s Faculty Fellow in Bioengineering and in Genetics, was awarded a 2022 Druckenmiller Fellowship from the New York Stem Cell Foundation Research Institute (NYSCF). This prestigious program is the largest dedicated stem cell fellowship program in the world and was developed to train and support young scientists working on groundbreaking research in the field of stem cell research. Haws is one of only five inductees into the 2022 class of fellows.

Haws earned his Ph.D. in Nutritional Sciences in 2021 from the University of Wisconsin-Madison, where he studied metabolism-chromatin connections under the mentorship of John Denu, Professor in Biomolecular Chemistry at the University of Wisconsin-Madison. As a NYSCF – Druckenmiller Fellow in the Cremins Laboratory for Genome Architecture and Spatial Neurobiology, Haws is using this previously developed expertise to frame his investigations into the underlying mechanisms driving the neurodegenerative disorder fragile X syndrome (FXS). “Ultimately, I hope that this work will help guide the development of future FXS-specific therapeutics of which none currently exist,” says Haws.

Read the full list of 2022 Druckenmiller Fellows and view introductory videos on the NYSCF website.

Yale Cohen Appointed Assistant Dean of Research Facilities and Resources at Penn Medicine

Yale E. Cohen, PhD

Yale E. Cohen, Professor of Otorhinolaryngology, with secondary appointments in Neuroscience and Bioengineering, was appointed Assistant Dean of Research Facilities and Resources at the Perelman School of Medicine at the University of Pennsylvania, effective April 1, 2022. Cohen is currently Chair of the Penn Bioengineering Graduate Group, and Director of the Hearing Sciences Center:

“Many of you are already quite familiar with Dr. Cohen, as his leadership roles in research training and education at PSOM and the University are far-reaching and impactful. Dr. Cohen is a Professor of Otorhinolaryngology with secondary appointments in the Department of Neuroscience and Engineering’s Department of Bioengineering. Recognized widely for his deep commitment to our teaching and training community, Dr. Cohen chairs the Bioengineering Graduate Group, and in 2020 received the prestigious Jane M. Glick Graduate Student Teaching Award, which honors clinicians and scientists who exemplify outstanding quality of patient care, mentoring, research, and teaching.”

Read the full announcement in the Penn Medicine archive.

Taimoor Qazi Appointed Assistant Professor at Purdue University

Taimoor H. Qazi, Ph.D.

The Department of Bioengineering is proud to congratulate Taimoor H. Qazi, Ph.D. on his appointment as Assistant Professor in the Weldon School of Biomedical Engineering at Purdue University. Qazi’s appointment will begin in Fall 2022.

Qazi obtained his Ph.D. at the Technical University of Berlin and the Charité Hospital in Berlin, Germany working on translational approaches for musculoskeletal tissue repair using biomaterials and stem cells under the co-advisement of Georg Duda, Director of the Berlin Institute of Health and David Mooney, Mercator Fellow at Charité – Universitätsmedizin Berlin. After arriving at Penn in 2019, Qazi performed research on microscale granular hydrogels in the Polymeric Biomaterials Laboratory of Jason Burdick, Adjunct Professor in Bioengineering at Penn and Bowman Endowed Professor in Chemical and Biological Engineering at the University of Colorado, Boulder. While conducting postdoctoral research, Qazi also collaborated with the groups of David Issadore, Associate Professor in Bioengineering and in Electrical and Systems Engineering, and Daeyeon Lee, Professor and Evan C. Thompson Term Chair for Excellence in Teaching in Chemical and Biomolecular Engineering and member of the Penn Bioengineering Graduate Group. Qazi’s postdoctoral research was supported through a fellowship from the German Research Foundation, and resulted in several publications in high-profile journals, including Advanced Materials, Cell Stem Cell, Small, and ACS Biomaterials Science and Engineering.

“Taimoor has done really fantastic research as a postdoctoral fellow in the group,” says Burdick. “Purdue has a long history of excellence in biomaterials research and will be a great place for him to build a strong research program.”

Qazi’s future research program will engineer biomaterials to make fundamental and translational advances in musculoskeletal tissue engineering, including the study of how rare tissue-resident cells respond to spatiotemporal signals and participate in tissue repair, and developing modular hydrogels that permit minimally invasive delivery for tissue regeneration. The ultimate goal is to create scalable, translational, and biologically inspired healthcare solutions that benefit a patient population that is expected to grow manifold in the coming years.

Qazi is looking to build a strong and inclusive team of scientists and engineers with diverse backgrounds interested in tackling problems at the interface of translational medicine, materials science, bioengineering, and cell biology, and will be recruiting graduate students immediately. Interested students can contact him directly at thqazi@seas.upenn.edu.

“I am excited to launch my independent research career at a prestigious institution like Purdue,” says Qazi. “Being at Penn and particularly in the Department of Bioengineering greatly helped me prepare for the journey ahead. I am grateful for Jason’s mentorship over the years and the access to resources provided by Jason, Dave Issadore, Ravi, Dave Meany and other faculty which support the training and professional development of postdoctoral fellows in Penn Bioengineering.”

Congratulations to Dr. Qazi from everyone at Penn Bioengineering!

Kevin Johnson Named AIMBE Fellow

Kevin B. Johnson, MD, MS

Kevin B. Johnson, David L. Cohen University Professor in Biostatistics, Epidemiology and Informatics and in Computer and Information Science, has been elected to the 2022 Class of the American Institute for Medical and Biological Engineering (AIMBE) Fellows. Johnson joined the Penn faculty in 2021. He also holds secondary appointments in Bioengineering, in Pediatrics, and in the Annenberg School for Communication, and is the Vice President for Applied Informatics for the University of Pennsylvania Health System.

Election to the AIMBE College of Fellows is among the highest professional distinctions accorded to a medical and biological engineer. College membership honors those who have made outstanding contributions to “engineering and medicine research, practice, or education” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of medical and biological engineering, or developing/implementing innovative approaches to bioengineering education.”

Johnson was nominated, reviewed, and elected by peers and members of the AIMBE College of Fellows for his pioneering discoveries in clinical informatics, leading to advances in data acquisition, medication management, and information aggregation in medical settings.

A formal induction ceremony was held during AIMBE’s 2022 Annual Event on March 25, 2022. Johnson was inducted along with 152 colleagues who make up the AIMBE Fellow Class of 2022. For more information about the AIMBE Annual Event, please visit www.aimbe.org.

Read Johnson’s AIMBE election press release here. Find the full list of 2022 Fellows here.

Researchers Develop Technology to Keep Track of Living Cells and Tissues

SAFE Bioorthogonal Cycling

Cells in complex organisms undergo frequent changes, and researchers have struggled to monitor these changes and create a comprehensive profile for living cells and tissues. Historically researchers have been limited to only 3-5 markers due to spectral overlaps in fluorescence microscopy, an essential tool required for imaging cells. With only this small handful of markers, it is difficult to monitor protein expressions of live cells and a comprehensive profile of cellular dynamics cannot be created. However, a new study in Nature Biotechnology addresses these limitations by demonstrating a new method for comprehensive profiling of living cells.

Jina Ko, PhD

Jina Ko, Assistant Professor in Bioengineering in the School of Engineering and Applied Science and in Pathology and Laboratory Medicine in the Perelman School of Medicine, conducted postdoctoral research at Massachusetts General Hospital (MGH) and the Wyss Institute at Harvard University, and the work for this study was done under the supervision of Jonathan Carlson M.D., Ph.D. and Ralph Weissleder M.D., Ph.D. of MGH. Ko’s lab at Penn develops novel technologies using bioengineering, molecular biology, and chemistry to address diagnostic challenges for precision medicine.

To address these limitations in microscopy, the team developed a new chemistry tool which was highly gentle to cells. This “scission-accelerated fluorophore exchange (or SAFE)” method utilizes “click” chemistry, a type of chemistry that follows examples found in nature to create fast and simple reactions. This new SAFE method functions with non-toxic conditions to living cells and tissues, whereas previous methods have used harsh chemicals that would strip off fluorophores and consequently would not work with living cells and tissues.

With the development of SAFE, the authors demonstrated that researchers can now effectively perform multiple cycles of cell profiling and can monitor cellular changes over the course of their observations. Instead of the previous limitation of 3-5 markers total, SAFE allows for many more cycles and can keep track of almost as many markers as the researcher wants. One can now stain cells and quench/release fluorophores and repeat the cycle multiple times for multiplexing on living cells. Each cycle can profile 3 markers, and so someone interested in profiling 15 markers could easily perform 5 cycles to achieve this much more comprehensive cell profile. With this breakthrough in more detailed imaging of cells, SAFE demonstrates broad applicability for allowing researchers to better investigate the physiologic dynamics in living systems.

Read the paper, “Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes,” in Nature Biotechnology.

This study was supported by the Schmidt Science Fellows in Partnership with the Rhodes Trust and National Institutes of Health, National Cancer Institute (K99CA256353).

Bioengineering Graduate Student Hannah Zlotnick Named Schmidt Science Fellow

by Evan Lerner

Hannah Zlotnick

Hannah Zlotnick, a graduate student in the Department of Bioengineering and a member of the McKay Orthopaedic Research Laboratory in Penn’s Perelman School of Medicine, has been named a Schmidt Science Fellow.

She joins 28 early-career scientists from around the world in this year’s cohort, with each receiving support for one to two years, $100,000 in salary support per year, individualized mentoring, and a series of professional development sessions as they pivot to the next stages of their research agendas.

The fellowship is a program of Schmidt Futures, the philanthropic initiative of Eric and Wendy Schmidt that aims to tackle society’s toughest challenges by supporting interdisciplinary researchers at the start of their careers.

“Our latest group of Schmidt Science Fellows embodies our vision for this Program at its inception five years ago,” says Eric Schmidt, co-founder of Schmidt Futures and former CEO and Chairman of Google. “We find the most talented next-generation leaders from around the world and back these impressive young adults with the resources and networks they need to realize their full potential while addressing some of the big scientific questions facing the world. Congratulations to the 2022 Schmidt Science Fellows, I am excited to see where your science takes you and what you will achieve.”

Working at the intersection of materials science, biology, and applied clinical research, Zlotnick’s postdoctoral work will involve developing advanced bioprinting techniques for regenerative medicine. Such advances are necessary to recreate the multi-cellular composition of orthopedic tissues, such as those found in the knee joint. Lab-grown tissue models can then be used to broaden our understanding of how degenerative diseases progress after injury, limit the need for animal models, and serve as a platform for therapeutic discovery.

Read the full story in Penn Engineering Today.

How Bacteria Store Information to Kill Viruses (But Not Themselves)

by Luis Melecio-Zambrano

A group of bacteriophages, viruses that infect bacteria, imaged using transmission electron microscopy. New research sheds light on how bacteria fight off these invaders without triggering an autoimmune response. (Image: ZEISS Microscopy, CC BY-NC-ND 2.0)

During the last few years, CRISPR has grabbed headlines for helping treat patients with conditions as varied as blindness and sickle cell disease. However, long before humans co-opted CRISPR to fight genetic disorders, bacteria were using CRISPR as an immune system to fight off viruses.

In bacteria, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) works by stealing small pieces of DNA from infecting viruses and storing those chunks in the genes of the bacteria. These chunks of DNA, called spacers, are then copied to form little tags, which attach to proteins that float around until they find a matching piece of DNA. When they find a match, they recognize it as a virus and cut it up.

Now, a paper published in Current Biology by researchers from the University of Pennsylvania Department of Physics and Astronomy shows that the risk of autoimmunity plays a key role in shaping how CRISPR stores viral information, guiding how many spacers bacteria keep in their genes, and how long those spacers are.

Ideally, spacers should only match DNA belonging to the virus, but there is a small statistical chance that the spacer matches another chunk of DNA in the bacteria itself. That could spell death from an autoimmune response.

“The adaptive immune system in vertebrates can produce autoimmune disorders. They’re very serious and dangerous, but people hadn’t really considered that carefully for bacteria,” says Vijay Balasubramanian, principal investigator for the paper and the Cathy and Marc Lasry Professor of Physics in the School of Arts & Sciences.

Balancing this risk can put the bacteria in something of an evolutionary bind. Having more spacers means they can store more information and fend off more types of viruses, but it also increases the likelihood that one of the spacers might match the DNA in the bacteria and trigger an autoimmune response.

Read the full story in Penn Today.

Vijay Balasubramanian is the Cathy and Marc Lasry Professor of Physics at the Department of Physics and Astronomy of the University of Pennsylvania, a visiting professor at Vrije Universiteit Brussel, and a member of the Penn Bioengineering Graduate Group.

Celebrating the Newest President’s Engagement, Innovation, and Sustainability Prize Winners

by Lauren Hertzler

The 2022 cohort of PEP, PIP, and PSP winners smile for a photo with Interim President Wendell Pritchett and Interim Provost Beth Winkelstein.

Last week, on a sunny spring day, the 2022 President’s Engagement, Innovation, and Sustainability Prize winners were recognized at a special luncheon, a momentous occasion that hasn’t taken place in-person since 2019. The 12 Prize recipients and their advisers, as well as past Prize winners and Penn leadership, joined together at the University Meeting and Guest House for a meal, good conversation, and celebration.

To the group, as well as family members tuning in through Zoom, Interim President Wendell Pritchett described this year’s winners as exemplifying creativity and leadership. “They epitomize why these prizes are central to the vision we share for Penn,” he said, before distributing handcrafted certificates to each of the six teams.

Eli Moraru, who earned one of the inaugural President’s Sustainability Prizes for his nonprofit The Community Grocer, said the event was uplifting for two main reasons: The first being that he got to network with his fellow PEP/PIP/PSP cohort, and the second being his connection with past Prize winners.

“It’s a real community,” Moraru said, sharing, as an example, how Christina Miranda from Be Body Positive Philly—a winner in the 2021 cohort—approached him expressing her interest in serving as a resource to his team in any way possible.

“It’s just one more reason showcasing how we aren’t alone in this,” Moraru said.

Chosen from an applicant pool of 71 people, the two other President’s Sustainability Prize-winning teams include Saif Khawaja for Shinkei Systems and Sarah Beth Gleeson, Shoshana Weintraub, and Julia Yan for EcoSPIN. Earning a President’s Innovation Prize, which was founded in 2016, is William Kohler Danon and Lukas Achilles Yancopoulos for Grapevine. In 2015, the very first President’s Engagement Prizes were announced. This year, Penn awarded this honor to two teams: Seungkwon Son, Max Strickberger, and Sam Strickberger for College Green Ventures and Manoj Simha and Rowana Miller from Cosmic Writers. Each team receives $100,000 to help get their projects off the ground, plus a $50,000 living stipend post-graduation per person.

Continue reading at Penn Today.

Center for Engineering Mechanobiology 2.0: Developing ‘Mechanointelligence’

by Evan Lerner

The dynamics governing mechanointelligence vary greatly along time- and length-scales, so detailed models of individual cells and their components are necessary to connect the effects of their physical environments to the downstream effects those forces have on biological processes.

The National Science Foundation’s Science and Technology Center (STC) program is its flagship funding mechanism for organizing interdisciplinary research on cutting-edge topics. Penn’s Center for Engineering MechanoBiology (CEMB) is one of the 18 active STCs, bringing together dozens of researchers from Penn Engineering and the Perelman School of Medicine, as well as others spread across campus and at partner institutions around the world.

With its NSF funding now renewed for another five years, the Center is entering into a new phase of its mission, centered on the nascent concept of “mechanointelligence.”

Mechanobiology is the study of the physical forces that govern the behavior of cells and their communication with their neighbors. Mechanointelligence adds another layer of complexity, attempting to understand the forces that allow cells to sense, remember and adapt to their environments.

Ultimately, harnessing these forces would allow researchers to help multicellular organisms — plants, animals and humans — better adapt to their environments as well.

“Mechanointelligence is a key element of a cell’s ability to survive and reproduce,” says CEMB Director and Eduardo D. Glandt President’s Distinguished Professor Vivek Shenoy. “Just like with complex organisms, a cell’s ‘fitness’ depends on its environment, and adapting means rewiring how its genes are expressed.”

Read the full story in Penn Engineering Today.

Vivek Shenoy is Eduardo D. Glandt President’s Distinguished Professor in Materials Science and Engineering, Bioengineering and Mechanical Engineering and Applied Mechanics.

César de la Fuente Receives 2022 RSEQ Young Investigator Award

César de la Fuente, PhD

César de la Fuente, Presidential Assistant Professor in Psychiatry, Bioengineering, Microbiology, and in Chemical and Biomolecular Engineering has been honored with a 2022 Young Investigator Award by the Royal Spanish Society of Chemistry (RSEQ) for his pioneering research efforts to combine the power of machines and biology to help prevent, detect, and treat infectious diseases.

Read the RSEQ’s announcement here.

This story originally appeared in Penn Medicine News’s Awards & Accolades post for April 2022.