With a ‘Liquid Assembly Line,’ Penn Researchers Produce mRNA-Delivering-Nanoparticles a Hundred Times Faster than Standard Microfluidic Technologies

by Evan Lerner

Michael Mitchell, Sarah Shepherd and David Issadore pose with their new device.

The COVID vaccines currently being deployed were developed with unprecedented speed, but the mRNA technology at work in some of them is an equally impressive success story. Because any desired mRNA sequence can be synthesized in massive quantities, one of the biggest hurdles in a variety of mRNA therapies is the ability to package those sequences into the lipid nanoparticles that deliver them into cells.

Now, thanks to manufacturing technology developed by bioengineers and medical researchers at the University of Pennsylvania, a hundred-fold increase in current microfluidic production rates may soon be possible.

The researchers’ advance stems from their design of a proof-of-concept microfluidic device containing 128 mixing channels working in parallel. The channels mix a precise amount of lipid and mRNA, essentially crafting individual lipid nanoparticles on a miniaturized assembly line.

This increased speed may not be the only benefit; more precisely controlling the nanoparticles’ size could make treatments more effective. The researchers tested the lipid nanoparticles produced by their device in a mouse study, showing they could deliver therapeutic RNA sequences with four-to-five times greater activity than those made by conventional methods.

The study was led by Michael Mitchell, Skirkanich Assistant Professor of Innovation in Penn Engineering’s Department of Bioengineering, and David Issadore, Associate Professor in Penn Engineering’s Department of Bioengineering, along with Sarah Shepherd, a doctoral student in both of their labs. Rakan El-Mayta, a research engineer in Mitchell’s lab, and Sagar Yadavali, a postdoctoral researcher in Issadore’s lab, also contributed to the study.

They collaborated with several researchers at Penn’s Perelman School of Medicine: postdoctoral researcher Mohamad-Gabriel Alameh, Lili Wang, Research Associate Professor of Medicine, James M. Wilson, Rose H. Weiss Orphan Disease Center Director’s Professor in the Department of Medicine, Claude Warzecha, a senior research investigator in Wilson’s lab, and Drew Weissman, Professor of Medicine and one of the original developers of the technology behind mRNA vaccines.

It was published in the journal Nano Letters.

“We believe that this microfluidic technology has the potential to not only play a key role in the formulation of current COVID vaccines,” says Mitchell, “but also to potentially address the immense need ahead of us as mRNA technology expands into additional classes of therapeutics.”

Read the full story in Penn Engineering Today.

Penn Engineering’s Latest ‘Organ-On-a-Chip’ is a New Way to Study Cancer-related Muscle Wasting

by Melissa Pappas

Bioengineering’s Dan Huh and colleagues have developed a number of organ-on-a-chip devices to simulate how human cells grow and perform in their natural environments. Their latest is a muscle-on-a-chip, which carefully captures the directionality of muscle cells as they anchor themselves within the body. See the full infographic at the bottom of this story. (Illustration by Melissa Pappas).

Studying drug effects on human muscles just got easier thanks to a new “muscle-on-a-chip,” developed by a team of researchers from Penn’s School of Engineering and Applied Science and Inha University in Incheon, Korea.

Muscle tissue is essential to almost all of the body’s organs, however, diseases such as cancer and diabetes can cause muscle tissue degradation or “wasting,” severely decreasing organ function and quality of life. Traditional drug testing for treatment and prevention of muscle wasting is limited through animal studies, which do not capture the complexity of the human physiology, and human clinical trials, which are too time consuming to help current patients.

An “organ-on-a-chip” approach can solve these problems. By growing real human cells within microfabricated devices, an organ-on-a-chip provides a way for scientists to study replicas of human organs outside of the body.

Using their new muscle-on-a-chip, the researchers can safely run muscle injury experiments on human tissue, test targeted cancer drugs and supplements, and determine the best preventative treatment for muscle wasting.

organ-on-a-chip
Dan Huh, Ph.D.

This research was published in Science Advances and was led by Dan Huh, Associate Professor in the Department of Bioengineering, and Mark Mondrinos, then a postdoctoral researcher in Huh’s lab and currently an Assistant Professor of Biomedical Engineering at Tulane University. Their co-authors included Cassidy Blundell and Jeongyun Seo, former Ph.D. students in the Huh lab, Alex Yi and Matthew Osborn, then research technicians in the Huh lab, and Vivek Shenoy, Eduardo D. Glandt President’s Distinguished Professor in the Department of Materials Science and Engineering. Lab members Farid Alisafaei and Hossein Ahmadzadeh also contributed to the research. The team collaborated with Insu Lee and professors Sun Min Kim and Tae-Joon Jeon of Inha University.

In order to conduct meaningful drug testing with their devices, the research team needed to ensure that cultured structures within the muscle-on-a-chip were as close to the real human tissue as possible. Critically, they needed to capture muscle’s “anisotropic,” or directionally aligned, shape.

“In the human body, muscle cells adhere to specific anchor points due to their location next to ligament tissue, bones or other muscle tissue,” Huh says. “What’s interesting is that this physical constraint at the boundary of the tissue is what sculpts the shape of muscle. During embryonic development, muscle cells pull at these anchors and stretch in the spaces in between, similar to a tent being held up by its poles and anchored down by the stakes. As a result, the muscle tissue extends linearly and aligns between the anchoring points, acquiring its characteristic shape.”

The team mimicked this design using a microfabricated chip that enabled similar anchoring of human muscle cells, sculpting three-dimensional tissue constructs that resembled real human skeletal muscle.

The the full story in Penn Engineering Today.

Alumni Spotlight: Jane Shmushkis

Jane graduated in Fall 2017 with both a B.S.E. in Bioengineering (with a Medical Devices Concentration) and M.S.E. in Bioengineering. Jane is currently an Automation Engineer at Mosa Meat (Maastricht, Netherlands) working on laboratory tools to scale up cultured beef production. Formerly, she was a Research & Development Engineer at Opentrons (Brooklyn, New York) working on affordable robots for life sciences research. She is also an instructor with Genspace Community Biology Lab (Brooklyn, New York).

Jane Shmushkis (BSE/MSE 2017)

“While at Penn, I worked in the Stephenson Foundation Educational Laboratory and Bio-MakerSpace and in the Chow Lab as a student researcher. The educational lab was a free space to mess around with rapid prototyping tools, including 3D printing, laser cutting, Arduino, and much more. The experience in synthetic biology research encouraged me to think of biology with an engineering lens and to have the confidence to plan my own experiments. The people I got to work with at the BioMakerSpace and the Chow Lab kept me optimistic through challenging semesters and excited to learn.

With this excitement to keep learning, I decided to submatriculate into the Bioengineering Master’s program. Because of the program’s flexibility, I could choose from a mix of project-based courses, like Biomechatronics and Modeling Biological Systems, and literature-based courses, like Tissue Engineering and Musculoskeletal Bioengineering. Outside of Bioengineering, I took classes to sharpen skills in part fabrication (Machine Design and Manufacturing) and programming (Computer Vision & Computational Photography). This breadth helped me realize how much I could do with a foundation in coding and mechanical design and an understanding of the life sciences.

Beyond Penn Engineering, I was involved in Penn Dance Company, CityStep Penn, and the Science & Technology Wing. Penn Dance was a necessary break for my body and mind. CityStep was a way to connect with the larger Philadelphia community through performing arts. STWing showed me how playful engineering can be. After a couple years on campus, I also built up the confidence to bike off campus. If you have a good helmet and quick reflexes, I really recommend it to explore more of Philly!”

This post is part of BE’s Alumni Spotlight series. Read more testimonies from BE Alumni on the BE website.

“’Electronic Nose’ Accurately Sniffs Out Hard-to-Detect Cancers”

A.T. Charlie Johnson, Ph.D.

A.T. Charlie Johnson, Rebecca W. Bushnell Professor of Physics and Astronomy at the Penn School of Arts & Sciences, and member of the Penn Bioengineering Graduate Group has been working with a team of researchers on a new “electronic nose” that could help track the spread of COVID-19 based on the disease’s unique odor profile. Now, similar research shows that vapors emanating from blood samples can be tested to distinguish between benign and cancerous pancreatic and ovarian cells. Johnson presented the results at the annual American Society of Clinical Oncology meeting on June 4 (Abstract # 5544):

“It’s an early study but the results are very promising,” Johnson said. “The data shows we can identify these tumors at both advanced and the earliest stages, which is exciting. If developed appropriately for the clinical setting, this could potentially be a test that’s done on a standard blood draw that may be part of your annual physical.”

Read the full story in Penn Medicine News.

Watch the Winners of the 2021 Senior Design Competition

by Priyanka Pardasani

Team OtoAI

Each year, Penn Engineering’s seniors present their Senior Design projects, a year-long effort that challenges them to test and develop solutions to real-world problems, to their individual departments. The top three projects from each department go on to compete in the annual Senior Design Competition, sponsored by the Engineering Alumni Society, which involves pitching projects to a panel of judges who evaluate their potential in the market. While the pandemic made this year’s competition logistically challenging, students and organizers were able to come together virtually to continue the tradition.

This year’s virtual format provided an opportunity for judges from around the country to participate in evaluating projects. Brad Richards, Director of Alumni Relations at Penn Engineering who helped plan the competition, was able to help recruit more than 60 volunteers to serve on the panel.

“The broad number of judges from varying industries made this competition incredibly meaningful, we will absolutely be integrating a virtual component to allow for more judges in the future.”

Eighteen teams total, three from each department, virtually presented to the panel of judges, who awarded $2,000 prizes in four categories.

Technology & Innovation Prize

This award recognized the team whose project represents the highest and best use of technology and innovation to leverage engineering principles.

Winner: Team OtoAI
Department: Bioengineering
Team Members: Krishna Suresh, Nikhil Maheshwari, Yash Lahoti, Jonathan Mairena, Uday Tripathi
Advisor: Steven Eliades, Assistant Professor of Otorhinolaryngology in Penn’s Perelman School of Medicine
Abstract: OtoAI is a novel digital otoscope that enables primary care physicians to take images of the inner ear and leverages machine learning to diagnose abnormal ear pathologies.

Read the full list of winners and watch their videos in Penn Engineering Today.

Bioengineering Graduate Sofia Gonzalez Honored with Leadership Awards

Sofia Gonzalez (BSE & MSE 2021)

Sofia Gonzalez, who graduated with both bachelor’s and master’s degrees in Bioengineering this spring, was one of a select number of Penn students to receive 2021 Student Leadership Awards. Gonzalez was awarded a Penn Alumni Student Award of Merit as well as the William A. Levi Kite & Key Society Award for Service and Scholarship. Awardees were celebrated during the university’s annual Ivy Day, “a tradition recognizing students’ leadership, service, and scholarship for nearly 150 years.”

Gonzalez discussed the importance of diverse representation in the Student Leadership Awards Book:

“Sofia reflected that on countless college tours, she noticed a striking pattern: only one of the ambassadors she encountered was a female engineer, and none of them were Latinx. While the nation was reckoning with racism, Sofia was leading critical discussions about how Kite & Key could improve in areas of diversity, equity, and inclusion to mirror the Penn student body. Sofia is now graduating, confident that she took measurable strides toward breaking the cycle of underrepresentation at America’s first University. Sofia’s work leaves a lasting legacy at Penn and beyond.”

Gonzalez also served as a Senior Advisor to the Biomedical Engineering Society (BMES) and as President of the Kite and Key Society, a society which welcomes all visitors to campus, acquaints prospective students and families with the undergraduate experience, and fosters a community of students dedicated to serving the University of Pennsylvania. Having completed her degrees, Gonzalez is headed for the first year of a rotational program as a member of the Merck Manufacturing Leadership Development Program in Durham, NC.

Following her time at Merck, Gonzalez will continue her education at the MIT Sloan School of Management. Gaining admission to the M.B.A. program via the Early Admission offering, she will matriculate within the following five years.

Read the full list of 2021 award winners and learn more about the awards on the Ivy Day website.

2021 CAREER Award recipient: Alex Hughes, Assistant Professor in Bioengineering

by Melissa Pappas

Alex Hughes (illustration by Melissa Pappas)

The National Science Foundation’s CAREER Award is given to early-career researchers in order to kickstart their careers in innovative and pivotal research while giving back to the community in the form of outreach and education. Alex Hughes, Assistant Professor in Bioengineering and in Cell and Developmental Biology, is among the Penn Engineering faculty members who have received the CAREER Award this year.

Hughes plans to use the funds to develop a human kidney model to better understand how the development of cells and tissues influences congenital diseases of the kidney and urinary tract.

The model, known as an “organoid,” is a lab-grown piece of human kidney tissue on the scale of millimeters to centimeters, grown from cultured human cells.

“We want to create a human organoid structure that has nephrons, the filters of the kidney, that are properly ‘plumbed’ or connected to the ureteric epithelium, the tubules that direct urine towards the bladder,” says Hughes. “To achieve that, we have to first understand how to guide the formation of the ureteric tubule networks, and then stimulate early nephrons to fuse with those networks. In the end, the structures will look like ‘kidney subunits’ that could potentially be injected and fused to existing kidneys.”

The field of bioengineering has touched on questions similar to those posed by Hughes, focusing on drug testing and disease treatment. Some of these questions can be answered with the “organ-on-a-chip” approach, while others need an even more realistic model of the organ. The fundamentals of kidney development and questions such as “how does the development of nephrons affect congenital kidney and urinary tract anomalies?” require an organoid in an environment as similar to the human body as possible.

“We decided to start with the kidney for a few reasons,” says Hughes. “First, because its development is a beautiful process; the tubule growth is similar to that of a tree, splitting into branches. It’s a complex yet understudied organ that hosts incredibly common developmental defects.

“Second,” he says, “the question of how things form and develop in the kidney has major medical implications, and we cannot answer that with the ‘organ-on-a-chip’ approach. We need to create a model that mimics the chemical and mechanical properties of the kidney to watch these tissues develop.”

The fundamental development of the kidney can also answer other questions related to efficiency and the evolution of this biological filtration system.

“We have the tendency to believe that systems in the human body are the most evolved and thus the most efficient, but that is not necessarily true,” says Hughes. “If we can better understand the development of a system, such as the kidney, then we may be able to make the system better.”

Hughes’ kidney research will lay the foundation for broader goals within regenerative medicine and organ transplantation.

Read the full story in Penn Engineering Today.

How HIV Infection Shrinks the Brain’s White Matter

by Katherine Unger Baillie

Researchers from Penn and CHOP detail the mechanism by which HIV infection blocks the maturation process of brain cells that produce myelin, a fatty substance that insulates neurons.

A confocal microscope image shows an oligodendrocyte in cell culture, labeled to show the cell nucleus in blue and myelin proteins in red, green, and yellow. Researchers from Penn and CHOP have shown that HIV infection prevents oligodendrocytes from maturing, leading to a reduction in white matter in the brain. (Image: Raj Putatunda)

It’s long been known that people living with HIV experience a loss of white matter in their brains. As opposed to gray matter, which is composed of the cell bodies of neurons, white matter is made up of a fatty substance called myelin that coats neurons, offering protection and helping them transmit signals quickly and efficiently. A reduction in white matter is associated with motor and cognitive impairment.

Earlier work by a team from the University of Pennsylvania and Children’s Hospital of Philadelphia (CHOP) found that antiretroviral therapy (ART)—the lifesaving suite of drugs that many people with HIV use daily—can reduce white matter, but it wasn’t clear how the virus itself contributed to this loss.

In a new study using both human and rodent cells, the team has hammered out a detailed mechanism, revealing how HIV prevents the myelin-making brain cells called oligodendrocytes from maturing, thus putting a wrench in white matter production. When the researchers applied a compound blocking this process, the cells were once again able to mature.

The work is published in the journal Glia.

“Even when people with HIV have their disease well-controlled by antiretrovirals, they still have the virus present in their bodies, so this study came out of our interest in understanding how HIV infection itself affects white matter,” says Kelly Jordan-Sciutto, a professor in Penn’s School of Dental Medicine and co-senior author on the study. “By understanding those mechanisms, we can take the next step to protect people with HIV infection from these impacts.”

“When people think about the brain, they think of neurons, but they often don’t think about white matter, as important as it is,” says Judith Grinspan, a research scientist at CHOP and the study’s other co-senior author. “But it’s clear that myelination is playing key roles in various stages of life: in infancy, in adolescence, and likely during learning in adulthood too. The more we find out about this biology, the more we can do to prevent white matter loss and the harms that can cause.”

Jordan-Sciutto and Grinspan have been collaborating for several years to elucidate how ART and HIV affect the brain, and specifically oligodendrocytes, a focus of Grinspan’s research. Their previous work on antiretrovirals had shown that commonly used drugs disrupted the function of oligodendrocytes, reducing myelin formation.

In the current study, they aimed to isolate the effect of HIV on this process. Led by Lindsay Roth, who recently earned her doctoral degree within the Biomedical Graduate Studies group at Penn and completed a postdoctoral fellowship working with Jordan-Sciutto and Grinspan, the investigation began by looking at human macrophages, one of the major cell types that HIV infects.

Read the full story in Penn Today.

Kelly Jordan-Sciutto is vice chair and professor in the University of Pennsylvania School of Dental Medicine’s Department of Basic & Translational Sciences and is director of Biomedical Graduate Studies. She is a member of the Penn Bioengineering Graduate Group.

Strella Biotechnology Featured in Philly Mag

NextUp, a regular feature of Philadelphia Magazine that “highlights the local leaders, organizations and research shaping the Greater Philadelphia region’s life sciences ecosystem,” ran a profile of Philly-based agricultural startup Strella Biotechnology. Founded by Penn alumna Katherine Sizov (Bio 2019) and winner of a 2019 President’s Innovation Prize, Strella Biotech seeks to reduce food waste through innovative biosensors, and was initially developed in the George H. Stephenson Foundation Educational Laboratory, the biomakerspace and primary teaching lab of the Department of Bioengineering.

Sizov says the coronavirus pandemic has made the volatility of grocery stores’ offerings even more apparent. Last April, the Produce Marketing Association estimated that nearly $5 billion of fresh fruits and vegetables had gone to waste in the first month of the pandemic due to the complex supply chain’s inability to quickly redirect shipping and distribution. ‘In a way, I think COVID-19 has helped us realize how delicate and fragile supply chains are,’ she says. ‘We are working to create better, stronger supply chains that are economically and environmentally sustainable for everyone involved — researchers, growers, packagers, distributors, retailers, and consumers.'”

Read “NextUp: The Philly Startup Using Biosensors to Combat Food Waste and Improve Supply Chains” in Philly Mag.

Read more BE blog stories featuring Strella Biotechnology.

Katherine Reuther Appointed Practice Associate Professor in Bioengineering

Katie Reuther, PhD, MBA

Katherine (Katie) Reuther, Ph.D., M.B.A. will return to Penn Engineering in July 2021 as the new Executive Director of Penn Health-Tech (PHT) and as Practice Associate Professor in Bioengineering. Reuther is an alumna of Penn Bioengineering, having obtained her Ph.D. at Penn in the laboratory of Louis Soslowsky, Fairhill Professor in Bioengineering and Orthopaedic Surgery.

“Dr. Reuther is a role model for biomedical innovation, linking formal training in engineering and entrepreneurship with deep practical experience in leading technologies through the commercialization pipeline. Dr. Reuther graduated with her Bachelor of Science in Biomedical Engineering, Magna cum Laude, from the College of New Jersey; she obtained her Ph.D. in Bioengineering at Penn in the laboratory of Dr. Louis Soslowsky and completed her MBA at Columbia, where she currently is a Senior Lecturer in Design, Innovation, and Entrepreneurship in the Department of Biomedical Engineering. During her tenure at Columbia, Dr. Reuther helped create and led Columbia’s Biomedical Engineering Technology Accelerator (BiomedX), overseeing more than 60 technologies leading to $80M in follow-on funding and 18 licenses to start-ups or start-ups industry.  Introducing both new courses and a new curriculum in biomedical innovation, Dr. Reuther was recently awarded Columbia’s highest teaching honor, the ‘2021 Presidential Award for Outstanding Teaching,’ this Spring as a recognition of her excellence in teaching and dedication to students.

Katie has extensive experience in developing and translating early-stage medical technologies and discoveries and providing formal educational training for aspiring medical entrepreneurs.  Dr. Reuther served as Director of Masters’ Studies for the Department of Biomedical Engineering and spearheaded the development of a graduate-level medical innovation program, including an interdisciplinary course available to scientists, engineers, and clinicians. Dr. Reuther provided advising and educational support to more than 100 student/faculty teams and start-ups, as they worked to develop and commercialize medical technologies. She will bring these extensive skills to PHT and Penn Bioengineering in two new, hands-on graduate courses in medical innovation centered around Penn Health-Tech ventures.”

Read the full announcement in OVPR news.