Ghana Trip to Study Tuberculosis: Day Three

by Danielle Tsougarakis, Bioengineering ’20; Jason Grosz, Bioengineering ’19; Ethan Zhao, Bioengineering ’19; and Kate Panzer, Bioengineering ’18

Ghana 3.1
Danielle Tsougarakis (left) and Kathleen Givan (right) on a paddleboat along Lake Bosomtwe.

David Issadore, a faculty member in the Department of Bioengineering at the University of Pennsylvania teaches an engineering course ENGR566 – Appropriate Point of Care Diagnostics. As part of this course, he and Miriam Wattenberger from CBE, have taken nine Penn students, most of them majoring in Bioengineering, to Kumasi, Ghana, to study the diagnosis of pediatric tuberculosis. While in Ghana, these students are blogging daily on their experiences.

This morning, we headed to Lake Bosomtwe, which is in the Kumasi metropolitan area. The setting was surreal, with an expansive lake surrounded by rich vegetation and puffy white clouds. Lake Bosomtwe is the only natural lake in Ghana, formed by a collision with a meteor millions of years ago. However, the local story behind the lake’s origin involves a hunter who seeks to shoot an antelope. The first day, he goes into the forest and successfully shoots an antelope, but the animal runs away. The next day, the hunter once again goes into the forest and successfully shoots the antelope, but the same escape occurs. Finally, on the third day, the hunter decides to follow the antelope after it has been shot. The hunter ends up at a small pond and sees the antelope enter the water and disappear. The hunter determines that the antelope is a ghost and decides to name the pond “Antelope god,” or Bosomtwe in Twi, one of the languages of Ghana. Bosom translates to “god,” and twe means “antelope.”

Ghana 3.2
Students enjoying jollof rice and fufu by Lake Bosomtwe.

Now there are 22 communities surrounding the perimeter. We found out it would take eight hours to walk around the entire lake – a trek no one wanted to attempt. However, we did get to wade into the warm water and explore further with the paddleboats. At first glance, the water appeared polluted with scattered plastic bottles. Upon further examination, we realized these were actually makeshift flotation devices for fish traps. We later saw a group of young boys wading through the water catching fish with their hands. Overall, there weren’t a lot of other people there, and we were the main tourist group.

After dinner, we converted our dollars to Ghanian cedis by a currency exchanger named Aness. Aness was a Muslim born in Kumasi with heritage in Niger, and we had an extensive discussion about the various aspects of his identity, including his identifications with Kumasi, Ghana, and Islam.   First, even though his parents came from Niger, he identified more strongly with Kumasi and Ghana since he was born here, saying, “You must be proud of where you are born because it’s the only thing you have.” He was extremely proud of the fact that Kumasi was the cultural center of Ghana. He seemed to have very strong stereotypes against people from Accra, claiming that the businessmen were dishonest and cared only about making money, not the way it was made. He also explained to us the use of various regional dialects across Ghana.  In Kumasi, the primary language of communication is Twi.

Ghana 3.3
Students playing card games and board games by the scenic Lake Bosomtwe.

Ghana Trip to Study Tuberculosis: Day Two

by Kaila Helm, Biological Basis of Behavior ’20; Kathleen Givan, Bioengineering and Political Science ’20; Kathryn Cocherl, Bioengineering ’20; Hope McMahon, Chemical and Biomolecular Engineering ’18; and Dave Pontoriero, Biotechnology MS ’18

Ghana 2.1
Grilled beef kebabs at a street side market, on the way from Accra to Kumasi.

David Issadore, a faculty member in the Department of Bioengineering at the University of Pennsylvania teaches an engineering course ENGR566 – Appropriate Point of Care Diagnostics. As part of this course, he and Miriam Wattenberger from CBE, have taken nine Penn students, most of them majoring in Bioengineering, to Kumasi, Ghana, to study the diagnosis of pediatric tuberculosis. While in Ghana, these students are blogging daily on their experiences.

Our day started early: at 6 A.M. We were startled to see an aerobic fitness class outside our hotel room door. Participants were sweating and dancing with smiling faces to high-energy rhythmic music — a definite contrast to the decidedly low-energy sleeping state we were hoping to enjoy further.

Breakfast was a lovely, carbohydrate-heavy smorgasbord of avocado, pancakes, and flower-shaped chicken sausages. We then boarded our bus for our trip to Kumasi. Along the way, we noticed the changing landscape as we headed out to the rural area. On the bus, Ethan played his ukulele. Due to construction, the traffic sides switch slightly at random. This could be hair-raising at times: suddenly, the bus would simply divert to the side of the road where, mere moments before, the traffic was streaming along merrily in the opposite direction.

We also stopped at a rest area, and we tried guinea fowl, goat, and banana milk. As we continued, we saw more goats and churches and fewer vendors on the side of the street. It was also interesting to see more and more mosques as we passed in to the more Muslim northern/central area. We arrived at the exceedingly spacious KNUST campus, lush and green, and also, not the bus (we were very ready to be off after four hours of driving!). We set up our rooms and prepared for the rest of the night.

The afternoon was hot and lazy, filled with unpacking and chatting about the wild experiences that we’d already had. A definitive highlight was a run that some students took on campus. The group was lucky enough to see the computer lab and a Ghanaian wedding and to meet up with some Ghanaian friends who helped with the program last year. After a shower and perhaps a quick nap for the lucky ones among us, we were ready for the next stage of the evening: the welcome party.

At the welcome party, we met the Ghanaian students who will be with us during our time here. We then watched a performance by drummers and traditional Ghanaian dancers. They pulled us in their circle and taught us some of their dance moves. We met some of the KCCR staff members who told us more about the work we will be starting this week. We ended the night in the lounge, reflecting on our day and getting to know each other better.

Ghana 2.2
Students enjoying snacks at a market on the road between Accra and Kumasi.

Ghana Trip to Study Tuberculosis: Day One

by Danielle Tsougarakis, Bioengineering ’20; Jason Grosz, Bioengineering ’19; Ethan Zhao, Bioengineering ’19; and Kate Panzer, Bioengineering ’18

Ghana 1.0


David Issadore, a faculty member in the Department of Bioengineering at the University of Pennsylvania teaches an engineering course ENGR566 – Appropriate Point of Care Diagnostics. As part of this course,  he and Miriam Wattenberger from CBE,
 have taken nine Penn students, most of them majoring in Bioengineering,  to Kumasi, Ghana to study the diagnosis of pediatric Tuberculosis. While in Ghana, these students will be blogging daily on their experiences.

 

Our trip began with a 10-hour flight, departing from JFK Airport on Thursday and arriving in Accra on Friday. Infrared cameras scanned us as we walked through customs at the Accra Airport (our guess was for fever), and we exited the airport to meet our contacts from Kwame Nkrumah University of Science and Technology (KNUST).
Ghana 1.1
(Left to right) Dr. Wattenbarger, Jason Grosz, Ethan Zhao, Hope McMahon, Katharine Cocherl, Kaila Helm

As soon as we walked out of the airport, we were hit with our first wave of hot and humid Ghanaian air. Shortly after driving out of the hectic airport traffic, we approached a coconut stand and hydrated with freshly cut coconuts. Many of us had coconut meat for the first time, with the coconuts hacked open by machetes.  The meat had an unexpectedly sweet and gooey texture, as opposed to dry and flaky texture of coconut shavings.

Ghana 1.2
(Left to right) Kaila Helm, David Pontoriero

As we were driving around Accra, we were surprised by the abundance of street vendors selling items on the side of the road. In order to sell their goods (gum, sunglasses, peanuts, fried bread, shampoos, etc.), the vendors dodged oncoming traffic and balanced their items in baskets on their heads.

Next, we went on a bus tour of the University of Ghana, admiring the expansive campus, green lawns, and beautiful whitewashed buildings with terracotta roofing. The remainder of the day was spent swimming in the hotel pool and eating our first Ghanaian meals of rice, chicken, fish, plantains, and banku — a Ghanaian dish made of fermented corn and cassava dough cooked in hot water into a paste.

Ghana 1.3
(Left to right) Kathleen Givan, Danielle Tsougarakis

Margulies Among Recipients of Award to Study Concussions

How can physicians and engineers help design athletic equipment and diagnostic tools to better protect teenaged athletes from concussions? A unique group of researchers with neuroscience, bioengineering and clinical expertise are teaming up to translate preclinical research and human studies into better diagnostic tools for the clinic and the sidelines as well as creating the foundation for better headgear and other protective equipment.

concussions margulies
Susan Margulies, PhD

The study will be led by three coinvestigators: Susan Margulies, the Robert D. Bent Professor of Bioengineering at the University of Pennsylvania’s School of Engineering and Applied Science (right); Kristy Arbogast, co-scientific director of the Center for Injury Research and Prevention at the Children’s Hospital of Philadelphia; and Christina Master, a primary care sports medicine specialist and concussion researcher at CHOP. They will use a new $4.5 million award from the National Institute of Neurological Disorders and Stroke.

The five-year project focuses specifically on developing a suite of quantitative assessment tools to enhance accuracy of sports-related concussion diagnoses, with a focus on objective metrics of activity, balance, neurosensory processing, including eye tracking, and measures of cerebral blood flow. These could also provide prognoses of the time-to-recovery and safe return-to-play for youth athletes. Researchers will examine such factors such as repeated exposures and direction of head motion. In addition, they will also look at sex-specific data to see how prevention and diagnosis strategies need to be tailored for males and females.

The multidisciplinary research team believes this study will result in post-concussion metrics that can provide objective benchmarks for diagnosis, a preliminary understanding of the effect of sub-concussive hits, the magnitude and direction of head motion and sex on symptom time course, as well as markers in the bloodstream that relate to functional outcomes.

Knowing the biomechanical exposure and injury thresholds experienced by different player positions can help sports organizations tailor prevention strategies and companies to create protective equipment design for specific sports and even specific positions.

The study will enroll research participants from The Shipley School, a co-ed independent school in suburban Philadelphias, and from CHOP’s Concussion Care for Kids: Minds Matter program which annually sees more than 2,500 patients with concussion in the Greater Delaware Valley region.

The study is funded by the National Institutes of Health.

Allen Foundation Awards Major Grant to Study Concussions

Faculty members in the Department of Bioengineering at the University of Pennsylvania are among the recipients of a major $9.25 million grant from the Paul G. Allen Family Foundation to study the mechanism underlying concussion and to investigate possible interventions.

allen foundation meaneyallen foundation smith

 

 

 

 

 

 

David Meaney, PhD, Solomon R. Pollack Professor and Chair of the Bioengineering Department (above left), is one of two principal investigators, with Douglas H. Smith, MD,  professor of neurosurgery at Penn’s Perelman School of Medicine (above right). In addition, Danielle S. Bassett, PhD, Eduardo D. Glandt Faculty Fellow and Associate Professor (below left), Dongeun (Dan) Huh, PhD, Wilf Family Term Assistant Professor (below center), and David Issadore, PhD, assistant professor (below right), all of BE Department, are co-investigators. The Allen Foundation grant also involves investigators from Columbia University (Barclay Morrison, Ph.D.), Duke University (Cameron Bass, Ph.D.), and Children’s Hospital of Philadelphia (Akiva Cohen, Ph.D.).

allen foundation bassettallen foundation huhallen foundation issadore

Selected from a large national pool of applicants, the Allen Foundation grant will bring together new technology platforms developed by Drs. Huh and Issadore to study how concussions occur at the microtissue scale and release markers of rewiring  during recovery. Network theory models from Dr. Bassett’s group will provide an entirely new view on how concussion recovery occurs at all scales in the brain. The overall impact of the project will be to move away from the widely held perspective that all concussions should be treated identically and towards a view that concussions can follow several recovery pathways, some of which must be monitored closely in the days to weeks following injury.

Pressure Sores Targeted by Flysole

Among the myriad medical complications caused by diabetes, pressure sores of the feet are among the most troubling. Because of the common  complication of peripheral neuropathy, people with diabetes are often unable to determine how much pressure is being exerted on their feet. As a result, they cause foot ulcers, which can become infected, leading in the worst cases to amputation.

pressure sores
The Flysole combines an insole with five sensors (top) and an ankle band (bottom) to house the electrical components, including the circuit for the pressure sensors as well as the microcontroller and SD card to log the pressure data.

One of the senior design teams from the Department of Bioengineering at the University of Pennsylvania developed a project to address this problem. Their solution was Flysole (right), a prognostic implant that diabetic patients can wear to collect data on foot pressure so that the doctor can prescribe an optimal orthotic to prevent sores from developing. The team was named one of the three winners of this year’s competition.

The team, which consisted of Parag Bapna, Karthik Ramesh, Jane Shmushkis, and Amey Vrudhula, designed the Flysole as a lightweight insole with ankle band paired with software that generates a profile of the pressure on the sole of the patient’s foot. The insole has five sensors to collect these data. The cost is approximately $75 per pair.

In addition, the team made the Flysole to be reusable by including a polyurethane laminate sleeve for the individual patient. Future improvements envisioned by the students include improving the software to include recommendations for orthotics and alternate arrangements for the sole sensors.

Project Builds on Breast Cancer Screening Tech

breast cancer
An embedded 11×11 cluster of 100-micron objects (which models a cluster of microcalcifications — one of the earliest indicators of breast cancer). (A) shows the results from the current standard of imaging only along the chest wall. (B) shows the results of our method that considers the patient’s unique breast geometry using a Custom V imaging pattern. (B) resolves the embedded cluster as a distinct cluster of objects while (A) appears to blur the final image.

Breast cancer continues to affect more than 10% of all women — and a small percentage of men — despite significant advances in diagnosis and treatment. While a majority cases today can be successfully treated, early detection is essential to beginning treatment before it’s too late.

Among the more recent innovations in screening has been three-dimensional mammography. However, this modality has lacked the ability to personalize the scan to the individual patient’s breast, instead only acquiring several two-dimensional images along the chest wall, resulting in a lack of individualization for the patient.

A senior design project team at the University of Pennsylvania’s Department of Bioengineering, however, has helped to develop a more personalized 3D imaging technology, which acquires a series of images but instead following the contour of the breast itself. With their efforts, the team earned one of the three awards given to student teams yearly.

The four-student team, consisting of Lucy Chai, Elizabeth Kobe, Margaret Nolan, and Sushmitha Yarrabothula, picked up a project begun last year (a common practice with senior design projects) and demonstrated with their work that the imaging technique could be applied using a digital phantom (a computerized breast model) with great clarity, including successful resolution of a simulated mass just one-tenth of a millimeter in size.

Now, the four seniors will hand off the project to another team, continuing this multi-year research. Ultimately, before it can be applied in actual patients, the modality will need to be tested against the current standard of care in terms of its ability to detect small masses in the breast. Nevertheless, this year’s team moved the ball downfield significantly.

Broad Street Run Is a Day Out for BE Students

Four students from the Bioengineering Department at the University of Pennsylvania participated in this year’s Blue Cross Broad Street Run, which was held on Sunday, May 7, in Philadelphia.

broad street run
(left to right) Melissa Schweizer, Mike Patterson, Kyle O’Neil, Margaret Schroeder

The four students (right) ran the annual event, which begins at Broad Street and W. Fisher Avenue, in the Logan section of North Philadelphia and runs almost the entire length of Broad to the Navy Yard in South Philadelphia. Broad Street is one of Philadelphia’s main thoroughfares and runs 11 miles along the city’s north-south axis. This year was the 38th year that the Broad Street Run has taken place.

“The Broad Street Run is one of the greatest Philadelphia running traditions,” department chair David Meaney, PhD, said, “and it is remarkable that our students would take time from their finals for an ‘easy’ ten-mile run — remarkable but not surprising.”

Henrietta Lacks Film Addresses Ethical Issues

by Andrew E. Mathis

henrietta lacks hela cells
HeLa cells after staining

In January 1951, Henrietta Lacks, a 30-year-old African-American woman from Baltimore, was diagnosed with cervical cancer at the Johns Hopkins Medical Center. She was treated with radium brachytherapy, the standard of care at the time, but her condition worsened. In August, a week after she turned 31, she was admitted to the hospital with severe abdominal pain. Less than three months later, she died. An autopsy showed widespread metastasis of the original cancer.

Henrietta Lacks had died, but strangely, her cancer cells have lived on. Unbeknownst to her and her family, Henrietta’s doctors had sampled her cancer cells for research — a common practice at the time, particularly from patients treated in wards. Those cells were given to George Gey, a JHU biologist who had been trying for years to establish a cancer cell line that could be grown outside the body. Henrietta Lacks’s cells ended up being the first cell line so established.

The cell line was named “HeLa” by Gey’s laboratory assistant, who coded cell samples using the first two letters of the donor’s first and last names. With Henrietta Lacks’s cells, Gey was able to establish an immortal cell line, i.e., a line of cells that would continue to divide indefinitely. The ability of these cells to divide like this lent itself to the line being used in numerous scientific studies since the 1950s, including Jonas Salk’s development of the polio vaccine.

Notwithstanding the tremendous accomplishments achieved using the HeLa cell line, the case nevertheless evokes serious ethical issues regarding the consent of patients to having their tissue used for research. In recent years, the case has attracted significant attention, with a book, The Immortal Life of Henrietta Lacks, published by Rebecca Skloot in 2010 and now an HBO feature film of the same title produced by and starring Oprah Winfrey as Lacks’s daughter. The film debuted on April 22.

Brittany Shields, PhD, a senior lecturer in the Department of Bioengineering at the University of Pennsylvania, discussed some of the issue raised by Lacks’s story. “Henrietta Lacks’s story has brought public attention to a number of ethical issues in biomedical research, including the role of informed consent, privacy, and commercialization in the collection, use and dissemination of biospecimens,” Dr. Shields says.

“In the United States, biomedical research at federally-funded institutions must follow the policy set by the Department of Health and Human Services. The current policy, known as the ‘Common Rule,’ calls for informed consent and oversight through Institutional Review Boards for research conducted with human beings,” she explains.

However, she continues, “these regulations may or may not apply in different situations related to biospecimens. If an anonymous biospecimen had already been collected for another purpose, informed consent is generally not required.”

In the case of Henrietta Lacks, or more precisely her descendants, an agreement was reached between the family and the National Institute of Health stipulating that the family must give consent when certain genetic information gleaned from the cell line is used. However, controversy between the family and the medical research community has persisted.

Danielle Bassett on Social Networks, Brain Activity

danielle bassett
Danielle Bassett, PhD
Danielle Bassett, Eduardo D. Glandt Faculty Fellow and Associate Professor in the departments of Bioengineering and Electrical and Systems Engineering, recently collaborated with colleagues from the Annenberg School for Communication and elsewhere, applying her network science approach to the brain to a study of social networks.

When someone talks about using “your network” to find a job or answer a question, most people understand that to mean the interconnected web of your friends, family, and acquaintances. But we all have another key network that shapes our life in powerful ways: our brains.

In the brain, impulses whiz from one brain region to another, helping you formulate all of your thoughts and decisions. As science continues to unlock the complexities of the brain, a group of researchers has found evidence that brain networks and social networks actually influence and inform one another.

The study, published today in the Proceedings of the National Academy of Sciences looked at the brain’s response to social exclusion under fMRI, particularly in the mentalizing system, which includes separate regions of the brain that help us consider the views of others.

It found that people who show greater changes in connectivity in their mentalizing system during social exclusion compared to inclusion tend to have a less tightly knit social network — that is, their friends tend not to be friends with one another. By contrast, people with more close-knit social networks, in which many people in the network tend to know one another, showed less change in connectivity in their mentalizing regions.

Continue reading.